Patents Represented by Attorney Lawrence N. Ginsberg
  • Patent number: 6231003
    Abstract: An apparatus for defending a vehicle against an approaching threat is disclosed. The apparatus comprises a body deployable from the vehicle having at least one reference axis thereon. A plurality of spaced divert thruster means are associated with the body for translating the body relative to the threat upon deployment from the vehicle. A plurality of spaced attitude control thruster means are associated with the body for providing roll, pitch and yaw to orient the reference axis to a desired orientation relative to the threat. A guidance system, associated with the reference axis, is provided for communicating electronic signals to the attitude control thruster means and divert thruster means for controlling the position of the body relative to the threat to eliminate the threat. The guidance system preferably operates independently of the vehicle after deployment.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: May 15, 2001
    Assignee: The Boeing Company
    Inventors: Richard A. Hibma, Richard W. Hilscher, Carlos T. Miralles, Jerry D. Ward, Blaine G. Wright
  • Patent number: 6199470
    Abstract: An apparatus for launching projectiles from a host aircraft is disclosed. The apparatus comprises: a rotary launcher, a plurality of launch tube assemblies, a plurality of projectile retention means, and a plurality of ejection cartridges. The rotary launcher has a plurality of support fittings thereon, each for securing a tube assembly to the rotary launcher. Each projectile retention means securely retains each projectile within its respective launch tube. Each ejection cartridge is mounted to a respective launch tube assembly and interfaces with a projectile retention means to provide an ejection of that projectile retention means.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: March 13, 2001
    Assignee: Boeing North American, Inc.
    Inventors: Anil Dewan, Richard N. Parke, William H. Stock
  • Patent number: 6154478
    Abstract: A high-capacity cryosorption vacuum pump system for a light-weight and compact chemical oxygen-iodine laser. The cryosorption vacuum pump system included a gas chiller and a bed of zeolite or other suitable sorption material. Gas exhausted from the chemical oxygeniodine laser is first chilled to about 100 degrees Kelvin and the condensable gases are removed. Cold and dry gas is then adsorbed onto a bed zeolite cooled to a temperature of approximately 80 degrees Kelvin. The zeolite bed uses a suitable zeolite material preferably in a granulated form and configured in layers several millimeters to several centimeters thick to provide an exposed surface of suitable size. The zeolite is enclosed in a suitable vacuum vessel and thermally insulated. Chilling of the zeolite is accomplished by a contact with suitable cryocooled surfaces or by exposing the zeolite to a cold light noble gas.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: November 28, 2000
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Patent number: 6146075
    Abstract: A method and apparatus for applying a coating composition to a surface on at least one panel member using a fastener having the composition on its exterior. The fastener, which has a greater coefficient of thermal expansion, is fitted within the panel member, and during thermally-induced expansion, acts to facilitate diffusion of the composition into the panel surface. The coating composition is applied to the fastener via conventional methods to the fastener, and is engineered to react with the material of the panel member to form, via a diffusion process, an intermediate coating in the region of the panel member and coating materials.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: November 14, 2000
    Assignee: The Boeing Company
    Inventor: Leo M. Delangis
  • Patent number: 6140632
    Abstract: A method for producing a spatially stratified Optical System includes the steps of a) selecting a suitable, spatially stratified profile of index of refraction to achieve an optical system having a desired performance; b) selecting an atomic/molecular species having a suitable index of refraction in a desired operational wavelength band; c) forming sub-micron pellets of the species; and d) placing the pellets into a host material while controlling the density of the placement. The density is varied to achieve a local index of refraction value for the optical system in accordance with the selected stratified profile. The wavelength regime the optical system is designed for is much greater than the characteristic scale of stratification, which in turn is much greater than the spatial size of the pellets. The optical system is much greater than the wavelengths in the wavelength regime.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: October 31, 2000
    Assignee: McDonnell Douglas Corporation
    Inventor: Stanley Schneider
  • Patent number: 6138951
    Abstract: A dispensing system for releasing a number of spacecraft from a launch vehicle. The dispensing system includes a base support structure securely fastened to a launch vehicle and a number of stacked frame assemblies. Each frame assembly includes a number of substantially parallel load bearing elongated post elements and a shear load transferring structure. The post elements are so arranged and spaced so as to define a geometry having a centerline. Each post element has a first end portion and a second end portion. Each first end portion is connected to either another frame assembly or the base support structure of the launch vehicle. The post elements support a number of spacecraft. The spacecraft are supported between adjacent post elements. The shear load transferring structure is connected to the post elements for transferring shear loads between the post elements.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: October 31, 2000
    Assignee: McDonnell Douglas Corporation
    Inventors: George J. Budris, Peter A. McGrath, II, Tony L. Toulouse, Richard J. Catalano, Michael B. Diverde
  • Patent number: 6072820
    Abstract: The COIL gain generator system includes a reactor for producing singlet delta oxygen and a mechanism for mixing high momentum diluent with the singlet delta oxygen and with iodine for producing a high momentum, low static temperature mixture of the singlet delta oxygen, diluent and iodine. The singlet delta oxygen and the iodine react to produce excited iodine atoms which can lase efficiently due to the low static temperature and can, after lasing, recover to high pressure in a diffuser due to the high momentum of the mixture. This provides the capability of using a chemical pump which allows a completely sealed system with no outside exhaust.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: June 6, 2000
    Assignee: The Boeing Company
    Inventor: Robert A. Dickerson
  • Patent number: 6068211
    Abstract: The present invention is a method of earth orbit space transportation and return utilizing a reusable flyback satellite. A reusable flyback satellite is positioned to a desired release point which provides the capability of the satellite to achieve a desired orbit. The satellite is deployed from that release point. It is then injected into orbit. On-orbit function and services to a payload of the satellite are provided. The satellite is de-orbited, re-entered and landed with airplane-like functionality and utility.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: May 30, 2000
    Inventors: David M. Toliver, Richard T. Cervisi, Armand R. Vanore
  • Patent number: 6057949
    Abstract: An infrared (IR) transmitter modulator/receiver controller (TM/RC) encodes downlink serial digital data and precise time synchronization strobes from a host system to provide a downlink modulated serial digital electrical waveform. At least one IR host system transceiver (HST) converts the downlink modulated serial digital electrical waveform to a modulated downlink IR light waveform. At least one IR remote device transceiver (RDT) receives the modulated downlink IR light waveform from the HST. Each RDT is connected to a remote device. The modulated downlink IR light waveform is converted into a corresponding electrical waveform and further demultiplexed into its downlink serial digital data and precise time synchronization strobes. Each RDT provides an uplink electrical and IR modulated serial digital waveform to be received by the HST for conversion to an uplink demodulated serial digital electrical waveform.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: May 2, 2000
    Assignee: The Boeing Company
    Inventor: Gary A. Kinstler
  • Patent number: 6050292
    Abstract: An absolute pressure regulator valve assembly for controlling the absolute pressure (P.sub.C) of a fluid source. The absolute pressure regulator valve assembly includes a hollow housing having an inlet port and a discharge port. The inlet port is in fluid communication with the fluid source. The discharge port is associated with a valve seat. A bellows assembly is positioned within the housing. The bellows assembly has an open first end and a closed second end. The first end is gas-tight sealed to the housing and is in fluid communication with a means for providing a reference pressure (P.sub.R) within the bellows assembly. A valve closure element is attached to the closed end of the bellows assembly. The valve closure element is positioned relative to the valve seat wherein motion of the bellows assembly provides opening and closure of the discharge port.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: April 18, 2000
    Assignee: McDonnell Douglas Corp.
    Inventors: Isaac Richman, James D. Gehris, Wesley A. King
  • Patent number: 6034466
    Abstract: The amplifier assembly includes a driver bellows and an output bellows. The driver bellows includes a first end and a second end. The first end is positionable adjacent a microactuator. The output bellows includes a first end and a second end. The first end of the output bellows is securely attached to the second end of the driver bellows. The second end of the output bellows is positionable adjacent a device to be actuated. The output bellows has a smaller volume than the driver bellows. Each bellows is filled with a working fluid. When the driver bellows is compressed by the microactuator the fluid displacement of the driver bellows is translated to the output bellows causing a displacement in the output bellows equal to the fluid displaced in the driver bellows. Thus, an amplified output stroke is provided of the desired magnitude.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: March 7, 2000
    Assignee: Boeing North American, Inc.
    Inventors: David E. Blanding, Jimmy L. Schmidt
  • Patent number: 6029269
    Abstract: In one broad aspect the present invention comprises the steps of providing a titanium-based material preform and superplastically forming the preform to a final helmet shape. In another broad aspect, a first piece of fiber-reinforced titanium matrix composite material is hot isostatically pressed (HIP'ed) to form a side wall section. A second piece of fiber-reinforced titanium matrix composite material is hot pressed to form an upper dome section. The side wall section is then HIP/diffusion bonded to the upper dome section.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: February 29, 2000
    Assignee: Boeing North American, Inc.
    Inventor: Sami M. El-Soudani
  • Patent number: 6010640
    Abstract: Basic hydrogen peroxide used in chemical oxygen lasers can be produced using a lithium based lithium hydroxide with a lithium hydroxide makeup of the reacted basic hydrogen peroxide. Lithium hydroxide, water and hydrogen peroxide are mixed and 1) passed over a lithium hydroxide solid bed or 2) premixed with small particulate solid lithium hydroxide or lithium hydroxide monohydrate. The basic hydrogen peroxide produced is chilled and stored cold until mixed with chlorine to produce singlet delta oxygen for use in the chemical oxygen iodine laser. The spent basic hydrogen peroxide is rejuvenated by passing it over a solid lithium hydroxide or in-situ solid particulate lithium hydroxides. After dissolution, the rejuvenated basic hydrogen peroxide is then reacted with chlorine to produce more singlet delta oxygen.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: January 4, 2000
    Assignee: Boeing North American, Inc.
    Inventors: David G. Beshore, David Stelman
  • Patent number: 6004449
    Abstract: An alkaline peroxide cell for electrolytic regeneration of spent BHP from a chemical oxygen iodine laser, the cell having a for regenerating chlorine and a peroxide cell for regenerating BHP. The chlorine compartment having a potassium chloride electrolyte and producing chlorine gas for the chemical oxygen iodine laser. The peroxide cell having a spent BHP electrolyte and producing BHP for the chemical oxygen iodine laser. A cation exchange membrane between the chlorine compartment and the peroxide compartment allows potassium ions to be transported from the chlorine compartment to the peroxide compartment.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: December 21, 1999
    Assignee: Boeing North American, Inc.
    Inventor: Jan Vetrovec
  • Patent number: 5984229
    Abstract: A system for enabling an aircraft to accomplish extremely short takeoffs and landings, which includes an integrated flight control system; a takeoff system; a landing system and a high thrust-to-weight propulsion system. The integrated flight propulsion control system includes a multi-axis thrust vectoring system. The takeoff system is operably engageable with the multi-axis thrust vectoring system. The takeoff system includes means for rotating the aircraft nose upwardly below stall speed without substantial use of thrust vectoring from the multi-axis thrust vectoring system. The landing system is operably engageable with the multi-axis thrust vectoring system. It includes means for de-rotating the aircraft from a high angle of attack to a main gear touchdown angle of attack sufficiently low to avoid scraping the tail of the aircraft.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: November 16, 1999
    Assignee: Boeing North American, Inc.
    Inventors: Steven J. Hollowell, Michael R. Robinson
  • Patent number: 5944060
    Abstract: The composite duct system includes a first, duct portion; a second, duct foam portion; and, a third duct portion. The first duct portion has a first surface for permitting a flowable medium to be conveyed adjacent thereto, and a second surface. The first duct portion is formed with a first fiber reinforced resin system. The second duct foam portion has a first surface bonded to the second surface of the first duct portion. The foam portion is formed of fire retarding material derived from a resin system. The third duct portion has a first surface bonded to a second surface of the foam portion. The third duct portion is formed of a second fiber reinforced resin system. Thus, a system is created having an internally sandwiched foam insulation.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: August 31, 1999
    Assignee: Boeing North American, Inc.
    Inventor: Michael D. MacKay
  • Patent number: 5933263
    Abstract: The system includes at least one data receiver, a low-power, photovoltaic power generation and distribution system, and a unique signal detector. The data receiver receives serial digital information from a remote optical data transmitter. The data receiver serves both activation and data/control wireless datalink functions. The low-power photovoltaic power generation and distribution system includes at least one photovoltaic panel for receiving optical power from a directed beam remote optical emission source. The power generation and distribution system also includes a power accumulation and distribution portion connected to the photovoltaic panel for accumulating power generated by the photovoltaic panel for periodically and intermittently distributing accumulated power in desired quantities. The unique signal detector is connected to the data receiver and to the power accumulation and distribution portion. It is also connectable to an electrical apparatus.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: August 3, 1999
    Assignee: The Boeing Company
    Inventor: Gary A. Kinstler
  • Patent number: 5900104
    Abstract: A housing is provided which is positionable adjacent a surface of a material to be treated. The housing and the surface of the material cooperate to form a reaction chamber. An exposure environment is provided having a plurality of components within the reaction chamber. A first component comprises charged particles. A second component comprises chemically active neutral particles. A third component comprises electromagnetic radiation. When the housing is so positioned adjacent a surface and the desired exposure environment is provided, the surface is altered as desired for cleaning, material removal or as preparation for adhesive bonding or etching.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: May 4, 1999
    Assignee: Boeing North American, Inc.
    Inventor: Ronald E. Lukins, Jr.
  • Patent number: 5884871
    Abstract: A method is provided for hypersonic laminar flow control which uses the effect of boundary layer stabilization by an ultrasonically transparent coating. A hypersonic body surface is covered by the coating which absorbs the flow disturbance energy and does not trip the boundary layer flow. In one embodiment, the coating is made from a porous material of regular structure containing cylindrical blind microholes normal to the body surface. In another embodiment, the porous material has random distributions of pore shape and orientation. Extraction of the flow disturbance energy by pores causes stabilization of the boundary layer on the coated surface and leads to laminar-turbulent transition delay. The method can be used to decrease the aerodynamic drag of hypersonic vehicles and reduce heat transfer on vehicle surfaces.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: March 23, 1999
    Assignee: Boeing North American, Inc.
    Inventors: Alexander V. Fedorov, Norman D. Malmuth
  • Patent number: 5853143
    Abstract: The flight vehicle includes an elongated central body having a central axis defined therein and a circumference. A plurality of elongated portions are positioned about the central body. A plurality of airbreathing engines are axisymetrically positioned about the central axis of the central body and between the respective elongated portions. Each flowpath includes a forebody, an inlet, an isolator duct, a combustor, a nozzle, and a mechanism for injecting fuel into the combustor. The forebody externally compresses the air flow. The inlet is downstream of the forebody to capture air flow. The isolator duct is downstream of the inlet to further reduce velocity of the air flow. The combustor is downstream of the isolator duct and finally, the nozzle is downstream of the combustor. The fuel/air mixture is burned in the combustor and expanded in the nozzle for providing thrust. A control mechanism is positioned about the central body for providing control of the flight vehicle.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Boeing North American, Inc.
    Inventors: Marty K. Bradley, Kevin G. Bowcutt, Harry Shortland, Philip S. Dunlap