Patents Represented by Attorney Michael A. Proksch
  • Patent number: 6862272
    Abstract: The invention includes an apparatus and a method for transmitting sub-protocol data units from a plurality of base transceiver stations to a subscriber unit. The method includes estimating time delays required for transferring the sub-protocol data units between a scheduler unit and each of the base transceiver stations. The method further includes the scheduler unit generating a schedule of time slots and frequency blocks in which the sub-protocol data units are to be transmitted from the base transceiver stations to the subscriber unit. The time delays are used to generate the schedule. The time delays can be used to generate a look ahead schedule that compensates for the timing delays of the sub-protocol data units from the scheduler unit to the base transceiver stations. The sub-protocol data units are wirelessly transmitted from the base transceiver stations to the subscriber unit according to the schedule.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: March 1, 2005
    Assignee: Intel Corporation
    Inventors: David R. Dulin, Sanjay Kasturia, Partho Mishra, Arogyaswami J. Paulraj, Matthew S. Peters
  • Patent number: 6850498
    Abstract: A wireless link between a first transmitter and a first receiver in a multiple access communications system is evaluated by receiving, at the first transmitter, information that is intended for a second receiver and that is transmitted in a second transmission mode that is different from the current transmission mode and obtaining an error measure for the information that is received at the first receiver and intended for the second receiver. The obtained error measure is then used to determine if the second transmission mode is an acceptable transmission mode. In an embodiment, if the second transmission mode is determined to be acceptable, then the current transmission mode of the first receiver can be replaced by the second transmission mode. In an embodiment, the current transmission mode is replaced by the second transmission mode only if the second transmission mode is a “higher” transmission mode than the current transmission.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: February 1, 2005
    Assignee: Intel Corporation
    Inventors: Robert W. Heath, Jose Tellado
  • Patent number: 6802035
    Abstract: The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 5, 2004
    Assignee: Intel Corporation
    Inventors: Severine Catreux, David Gesbert, Manish Airy
  • Patent number: 6799265
    Abstract: A data dependency checking table is used with a reconfigurable chip. A control processing chip on the reconfigurable chip can load variable size blocks of data to and from reconfigurable slices on the reconfigurable chip from an external memory. The dependency checking table is used to ensure data coherency. The dependency checking table stores an indication of size of the memory blocks transferred between the external memory and the reconfigurable logic slices. In a preferred embodiment, the size indication is a mask value in which reduces the computation involved in determining whether there is a potential data coherency conflict.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: September 28, 2004
    Assignee: Intel Corporation
    Inventor: Dani Y. Dakhil
  • Patent number: 6760882
    Abstract: A method and communication system for selecting a mode for encoding data for transmission in a wireless communication channel between a transmit unit and a receive unit. The data is initially transmitted in an initial mode and the selection of the subsequent mode is based on a selection of first-order and second-order statistical parameters of short-term and long-term quality parameters. Suitable short-term quality parameters include signal-to-interference and noise ratio (SINR), signal-to-noise ratio (SNR), power level and suitable long-term quality parameters include error rates such as bit error rate (BER) and packet error rate (PER). The method of the invention can be employed in Multiple Input Multiple Output (MIMO), Multiple Input Single Output (MISO), Single Input Single Output (SISO) and Single Input Multiple Output (SIMO) communication systems to make subsequent mode selection faster and more efficient.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: July 6, 2004
    Assignee: Intel Corporation
    Inventors: David J. Gesbert, Severine E. Catreux, Robert W. Heath, Jr., Peroor K. Sebastian, Arogyaswami J. Paulraj
  • Patent number: 6751451
    Abstract: Some embodiments of the present invention are directed to a device having a soft decoder to produce a codeword by soft decoding one or more repetitions of a word received by a receiver and a power reducer to reduce power to the receiver when a message contained in the codeword is not addressed to the receiver.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 15, 2004
    Assignee: Intel Corporation
    Inventors: Doron Rainish, Shlomo Shamai, Yona Perets
  • Patent number: 6748505
    Abstract: A method of efficiently performing transactions on the system bus which includes at least a request signal line, a grant signal line, a set of address signal lines, and a set of data signal lines in which upon the falling edge of the grant signal from the memory controller for a first memory transaction and prior to the completion of the servicing of the first memory transaction, a second memory transaction can be issued. Once a first address corresponding to the first memory transaction request is transmitted to the memory controller, the address lines are available for transmitting a second address corresponding to the second memory transaction request to the memory controller. The memory controller then stores the second address in a buffer whereupon the completion of servicing the first memory transaction request, the second request can be serviced without waiting for the second request arbitration process or for the address to be transmitted to the memory controller.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: June 8, 2004
    Assignee: Intel Corporation
    Inventor: Dani Y. Dakhil
  • Patent number: 6735418
    Abstract: An antenna interface for a Time Division Duplex (TDD) radio transceiver allows a transceiver to be attached to an antenna/filter without the need for an antenna switch. The antenna interface includes a single Balun circuit to convert a single-ended signal to/from differential signals, and a single impedance matching circuit to match an impedance at an output of the single Balun circuit with an input impedance of a Low Noise Amplifier (LNA) of a receiver and to provide an output impedance of a Power Amplifier (PA) of a transmitter. The single impedance matching circuit is coupled to both the LNA and the PA. The LNA and the PA are based on CMOS technology and made within a single integrated circuit.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: May 11, 2004
    Assignee: Intel Corporation
    Inventors: Donald E. MacNally, Thomas B. Cho
  • Patent number: 6732126
    Abstract: A programmable and configurable datapath unit (DPU) includes a configuration of single-bit multi-function processing units (PUs). The DPU can perform any of a variety of functions depending on the control applied to each PU. Functionality can be increased by utilizing multiplexers to direct data into, out of, and through each DPU dependent on the selected function being performed. Datapath units can also be configured and interconnected to form larger datapath circuits, arrays, and systems so as to increase the data throughput of the datapath system. A configurable and programmable datapath array includes rows of datapath units which can be interconnected to provide DPU circuits having varying input operand widths and functions. A datapath system can be constructed with a plurality of arrays of DPUs to further increase system data throughput.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: May 4, 2004
    Assignee: Intel Corporation
    Inventor: Hsinshih Wang
  • Patent number: 6678253
    Abstract: The present invention provides methods and apparatus for implementing spatial multiplexing in conjunction with the one or more multiple access protocols during the broadcast of information in a wireless network. A subscriber unit for use in a cellular system is disclosed. The subscriber unit includes: spatially separate receivers, a spatial processor, and a combiner. The spatially separate receivers receive the assigned channel composite signals resulting from the spatially separate transmission of the subscriber downlink datastream(s). The spatial processor is configurable in response to a control signal transmitted by the base station to separate the composite signals into estimated substreams based on information obtained during the transmission of known data patterns from at least one of the base stations. The spatial processor signals the base stations when a change of a spatial transmission configuration is required.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 13, 2004
    Assignee: Intel Corporation
    Inventors: Robert W. Heath, Jr., Peroor K. Sebastian, Rahul Chopra, Arogyaswami J. Paulraj