Patents Represented by Attorney, Agent or Law Firm Reed A. Duthler
  • Patent number: 8135479
    Abstract: A sensor assembly, which may be incorporated by a medical electrical lead, includes an insulative body, formed from a biocompatible plastic, and a sensor mounted on a mounting surface of the insulative body. The mounting surface extends distally from a proximal portion of the insulative body in which first and second conductive inserts extend, being spaced apart and isolated from one another. The sensor is coupled to each of the first and second conductive inserts, and the first conductive insert includes a conductor-coupling end extending proximally from the proximal portion of the insulative body. The sensor assembly may further include an electrode extending around the sensor and the insulative body, wherein the electrode includes an aperture approximately aligned with an active surface of the sensor to expose the active surface. A mounting platform assembly for the sensor assembly may include the conductive inserts and the insulative body.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: March 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: Arshad A. Alfoqaha, Kris A. Peterson
  • Patent number: 8135463
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 8108043
    Abstract: A method and an apparatus for treating cardiac arrhythmias are provided. An interval between first and second consecutive beats of a heart, having first and second chamber types, is determined. The heart is paced at a first rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is less than a predetermined amount of time or if the first and second beats are both from the second chamber type. The heart is paced at a second rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is more than the predetermined amount of time.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: January 31, 2012
    Assignee: Medtronic, Inc.
    Inventors: H. Toby Markowitz, Matthew Harris, Trina Ann Brand
  • Patent number: 8103358
    Abstract: The medical lead delivery device more easily and quickly delivers a lead to or through the coronary vein of a patient's heart. The medical lead delivery device includes an elongated body, a controller, a first and second spring, and a sleeve. The elongated body includes a proximal end and a distal end. The controller is disposed at the proximal end and provides enhanced control of the distal tip of the elongated body.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 24, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Patrick Senarith
  • Patent number: 8103357
    Abstract: An implantable medical lead includes an adaptor coupled to a body of the lead. The adaptor holds a sensor capsule between a first portion and a second portion of the lead body.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: January 24, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Brian T. McHenry, Teresa A. Whitman, Sandra F. Viktora
  • Patent number: 8060202
    Abstract: Pacing parameters are provided to address cross talk and intrinsic ventricular events occurring within a predefined blanking period following an atrial event. The parameters are used in conjunction with protocol for minimizing or reducing ventricular pacing, wherein ignoring intrinsic ventricular events during the blanking period might otherwise affect the performance of the protocol.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: November 15, 2011
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel, Steven R. Hornberger, Todd J. Sheldon, Douglas A. Peterson
  • Patent number: 8055322
    Abstract: Devices and methods for measuring a target ion concentration uses an electrode pair. The pair includes a working electrode and a reference electrode. The working and reference electrodes are ion-selective electrodes (ISEs). The reference ISE can include a sodium ISE. The ISE pair interacts with body fluids where a target ion concentration changes more than sodium ion concentration over time. Some ISE membranes of a pair vary essentially only in the ionophore. An ISE pair can determine the ratio of a target ion concentration to sodium ion concentration in vivo. Periodic measurement of sodium concentration in drawn blood can be used to calibrate an ISE pair and provide target ion concentration as an output. Or, a potassium/sodium ISE pair beneficially monitors potassium concentration changes over time in heart- or kidney-failure patients. Then, manual or automatic titration of a diuretic material can be implemented to maintain a desired potassium concentration.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: November 8, 2011
    Assignee: Medtronic, Inc.
    Inventor: Qingshan Ye
  • Patent number: 8052711
    Abstract: A fixation mechanism coupled to an implantable device body extends from a proximal portion of the body to a distal portion of the body and includes a fixation element and a push tube segment. A push tube segment of the mechanism extends proximally from the fixation mechanism to the proximal portion of the body and is adapted to deploy the mechanism.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: November 8, 2011
    Assignee: Medtronic, Inc.
    Inventors: Gary H. Hanse, Matthew A. Bergan, Terese A. Bartlett, Ryan T. Bauer, Vicki L. Bjorklund, Richard D. Sandstrom
  • Patent number: 8052610
    Abstract: An implantable medical device includes a sensor for sensing a first signal in a patient, detection circuitry for receiving the first signal, determining a parameter therefrom, and detecting a first event in response to the parameter. The device further includes control circuitry configured to receive a second signal corresponding to a second event and to determine a threshold from the stored parameter in response to receiving the second event signal. The detection circuitry detects the first event in response to the parameter crossing the determined threshold.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 8, 2011
    Assignee: Medtronic, Inc.
    Inventors: Roland W. M. Bullens, Roger Kessels
  • Patent number: 8055335
    Abstract: Adaptations to an intra-thoracic fluid-status-trend indication and/or alert algorithm are disclosed. Some embodiments monitor fluid levels in heart failure patients and others suffering from pulmonary edema and the like. Some embodiments reset a cumulative fluid index when a short-term intra-thoracic impedance value exceeds a baseline impedance value minus a predetermined positive hysteresis value. Many device, system, and method embodiments hereof serve to reduce the number of false positive alerts while retaining the desired sensitivity.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 8, 2011
    Assignee: Medtronic, Inc.
    Inventor: Lee Stylos
  • Patent number: 8046065
    Abstract: The disclosure provides methods and apparatus of left ventricular pacing including automated adjustment of a atrio-ventricular (AV) pacing delay interval and intrinsic AV nodal conduction testing. It includes—upon expiration or reset of a programmable AV Evaluation Interval (AVEI)—performing the following: temporarily increasing a paced AV interval and a sensed AV interval and testing for adequate AV conduction and measuring an intrinsic atrio-ventricular (PR) interval for a right ventricular (RV) chamber. Thus, in the event that the AV conduction test reveals a physiologically acceptable intrinsic PR interval then storing the physiologically acceptable PR interval in a memory structure (e.g., a median P-R from one or more cardiac cycles). In the event that the AV conduction test reveals an AV conduction block condition or if unacceptably long PR intervals are revealed then a pacing mode-switch to a bi-ventricular (Bi-V) pacing mode occurs and the magnitude of the AVEI is increased.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Karen J. Kleckner, Thomas J. Mullen
  • Patent number: 8046064
    Abstract: Medical devices and methods are used to treat cardiac dysfunction conditions which involve delivery of stimulation pulses in cardiac refractory periods in order to modulate an effective refractory period (ERP). Such devices and methods may be used in conjunction with or in place of other therapies, including increased cardiac contractility (ICC) therapy, post extrasystolic potentiation (PESP) therapy, and other therapies to achieve increased heart contractility, provide a safer and more effective regimen for the corresponding stimulation therapies, and reduce the risk of inducing an arrhythmia.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Dwight H. Warkentin, D. Curtis Deno
  • Patent number: 8046063
    Abstract: An implantable medical device operates with an algorithm that promotes intrinsic conduction and reduces ventricular pacing. The IMD monitors the occurrence of necessary ventricular pacing and takes certain actions based upon whether this occurrence has been relatively high or relatively low. When noise is detected, asynchronous pacing is provided when the occurrence is relatively high and is not provided when relatively low. When atrial threshold testing is performed, the incidence will determine which methodology is utilized.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventor: Robert A. Betzold
  • Patent number: 8046067
    Abstract: AV synchronous, dual chamber pacing systems are disclosed having improved sensing of ectopic ventricular depolarizations or PVCs coincidentally occurring at or shortly following delivery of an A-PACE pulse. A first ventricular sense amplifier that is blanked during and following delivery of an A-PACE pulse is coupled to active and indifferent ventricular pace/sense electrodes defining a ventricular sense vector for sensing natural ventricular depolarizations and declaring a V-EVENT. A far field PVC sense amplifier coupled to a far field PVC sense electrode pair defining a PVC sense vector detects such PVCs while the ventricular sense amplifier is blanked. A PVC declared during the ventricular blanking period by the far field PVC sense amplifier is employed to deliver a VSP pulse upon time-out of a VSP delay, if the VSP function is provided and programmed ON, and/or to halt time-out of an AV delay.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Jeffrey M. Gillberg
  • Patent number: 8043126
    Abstract: An improved medical lead assembly and method of use is provided. The lead assembly includes a lead body, and a spring member positioned adjacent to the lead body. The spring member may be deployed a selectable amount to maintain the lead body in a fixed location within a patient's body. The spring member may be an expandable coil, a mesh structure that is similar to a stent, or any other similar device that may be positioned in a low-profile state during a lead implant procedure. After the lead is positioned at a target destination, the spring member may be deployed an amount that is selected based on the characteristics of the surrounding tissue, including vessel size. According to one aspect of the invention, the lead assembly may provide means for facilitating chronic lead extraction.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, John L. Sommer, Douglas S. Hine, Charles J. Love, Douglas N. Hess, Nicolaas M. Lokhoff
  • Patent number: 8041434
    Abstract: A distal section of an implantable medical electrical lead body includes a pair of pre-formed arcuate segments between which an approximately straight segment extends. The approximately straight segment includes a first portion extending distally from a first of the pair pre-formed arcuate segments, a second portion extending from the first portion, a third portion extending from the second to a second of the pair pre-formed arcuate segments. An electrode is coupled to the second portion of the approximately straight segment, and the adjacent first portion has a stiffness which is less than that of the first of the pair pre-formed arcuate segments and preferably less than the stiffness of the third portion, so that, when the distal section of the lead body is implanted, for example, within a cardiac vein, the lead buckles to bring the electrode into closer contact with surrounding tissue.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 18, 2011
    Assignee: Medtronic, Inc.
    Inventors: William J. Clemens, Nicole L. Werner, Deborah A. Loch, Douglas Stephen Hine, Douglas N. Hess, Carla C. Pfeiffer, Walton William Baxter, III
  • Patent number: 8032216
    Abstract: An atrial based pacing protocol promotes intrinsic conduction. An entire cardiac cycle is monitored for ventricular activity and permitted to lapse with ventricular activity. Ventricular pacing is available in a cardiac cycle immediately subsequent to such a skipped beat. When monitoring for intrinsic ventricular events, an event is expected within a given window. If no such event is detected, the cardiac cycle is truncated, leading to a shorter cycle that is devoid of ventricular activity. The subsequent cycle has a high likelihood of a ventricular sensed event and a greater than normal AV interval is provided prior to pacing.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 4, 2011
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Paul A. Belk, Michael O. Sweeney
  • Patent number: 8024041
    Abstract: The invention is directed to techniques for providing cardiac resynchronization therapy by synchronizing delivery of pacing pulses to the left ventricle with intrinsic right ventricular depolarizations. An implantable medical device measures an interval between an atrial depolarization and an intrinsic ventricular depolarization is measured. In various embodiments, the intrinsic ventricular depolarization may be an intrinsic right or left ventricular depolarization. The implantable medical device delivers pacing pulses to the left ventricle to test a plurality of pacing intervals. The pacing intervals tested may be within a range around the measured interval between the atrial depolarization and the intrinsic ventricular depolarization. One of the pacing intervals is selected based on a measured characteristic of an electrogram that indicates ventricular synchrony. For example, the pacing interval may be selected based on measured QRS complex widths and/or Q-T intervals.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Medtronic, Inc.
    Inventor: Giorgio Corbucci
  • Patent number: 8010207
    Abstract: The invention is directed to medical leads for use with implantable medical devices. Various features of medical leads are described, many of which may be useful in a variety of different leads, e.g., used in a variety of different applications. In one embodiment, the invention provides a medical lead of varying stiffness characteristics. In another embodiment, the invention provides a medical lead having a semi-conical shaped distal tip that becomes wider at more distal tip locations. In either case, described lead features may be particularly useful for J-shaped lead configurations used for implantation in a patient's right atrium. Many other types of leads, however, could also benefit from various aspects of the invention.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: August 30, 2011
    Assignee: Medtronic, Inc.
    Inventors: Karel F. A. A. Smits, Jean J. G. Rutten, Paul G. Adams
  • Patent number: 8005549
    Abstract: A method of manufacture of a medical device lead. The lead includes one or more jacketed conductive elements. The jacket comprises one or more covers. The jacketed conductive element is formed by introducing a polymeric material over a conductive element, coupling the conductive element around a mandrel to form a coil shape, annealing the polymeric material over the at least one conductive element and setting a coiled shape in the at least one conductive element; and then removing the at least one conductive element from the mandrel. The coiled conductive element as manufactured thus substantially retains its original coiled shape.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 23, 2011
    Assignee: Medtronic, Inc.
    Inventors: Gregory A. Boser, Kevin R. Seifert, Greg Garlough