Patents Represented by Attorney, Agent or Law Firm Richard A. Nakashima
  • Patent number: 8349332
    Abstract: Disclosed herein are compositions and methods of use comprising hexavalent DNL complexes. Preferably, the complexes comprise anti-CD20 and/or anti-CD22 antibodies or fragments thereof. More preferably, the anti-CD20 antibody is veltuzumab and the anti-CD22 antibody is epratuzumab. Administration of the subject hexavalent DNL complexes induces apoptosis and cell death of target cells in diseases such as B-cell lymphomas or leukemias, autoimmune disease or immune dysfunction disease. In most preferred embodiments, the DNL complexes increase levels of phosphorylated p38 and PTEN, decrease levels of phosphorylated Lyn, Akt, ERK, IKK?/? and I?B?, increase expression of RKIP and Bax and decrease expression of Mcl-1, Bcl-xL, Bcl-2, and phospho-BAD in target cells. The subject DNL complexes show EC50 values for inhibiting tumor cell growth in the low nanomolar or even sub-nanomolar concentration range.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 8, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8343460
    Abstract: The present application discloses compositions and methods of synthesis and use of F-18 labeled molecules of use in PET imaging. In particular embodiments, the labeled molecules may be peptides or proteins, although other types of molecules may be labeled and utilized. Preferably, the F-18 is attached to a targeting molecule by formation of a metal complex and binding of the F-18-metal complex to a chelating moiety. In other embodiments, the metal may first be attached to the chelating group and subsequently the F-18 bound to the metal. More preferably, the F-18 label moiety may be attached to a targetable conjugate that is used for pretargeting in combination with a bispecific or multispecific antibody. The F-18-metal labeled molecules are stable in human serum at 37° C.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 1, 2013
    Assignee: Immunomedics, Inc.
    Inventors: William J. McBride, David M. Goldenberg
  • Patent number: 8343496
    Abstract: Disclosed are compositions that include anti-CD74 immunoconjugates and a therapeutic and/or diagnostic agent. Also disclosed are methods for preparing the immunoconjugates and using the immunoconjugates in diagnostic and therapeutic procedures. The compositions may be part of a kit for administering the anti-CD74 immunoconjugate compositions in therapeutic and/or diagnostic methods.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 1, 2013
    Assignee: Immunomedics, Inc.
    Inventors: Gary L. Griffiths, Hans J. Hansen, David M. Goldenberg, Bo B. Lundberg
  • Patent number: 8338140
    Abstract: The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 25, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Sung-Ju Moon, David M. Goldenberg, Chien-Hsing Chang
  • Patent number: 8337840
    Abstract: The present invention provides humanized, chimeric and human anti-CD19 antibodies, anti-CD19 antibody fusion proteins, and fragments thereof that bind to a human B cell marker. Such antibodies, fusion proteins and fragments thereof are useful for the treatment and diagnosis of various B-cell disorders, including B-cell malignancies and autoimmune diseases. In more particular embodiments, the humanized anti-CD19 antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels. In a particularly preferred embodiment, the substitutions comprise a Ser91Phe substitution in the hA19 VH sequence.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 25, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Zhengxing Qu, David M. Goldenberg
  • Patent number: 8333971
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject. The compositions may comprise a targeting molecule against an HIV antigen, such as an anti-HIV antibody or antibody fragment. The anti-HIV antibody or fragment may be conjugated to a variety of cytotoxic agents, such as doxorubicin. In a preferred embodiment, the antibody or fragment is P4/D10. Other embodiments may concern methods of imaging, detection or diagnosis of HIV infection in a subject using an anti-HIV antibody or fragment conjugated to a diagnostic agent. In alternative embodiments, a bispecific antibody with at least one binding site for an HIV antigen and at least one binding site for a carrier molecule may be administered, optionally followed by a clearing agent, followed by administration of a carrier molecule conjugated to a therapeutic agent.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: December 18, 2012
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Chien Hsing Chang, Edmund A. Rossi, William J. McBride
  • Patent number: 8287865
    Abstract: The present invention provides compositions and methods of use of humanized, chimeric or human Class I anti-CEA antibodies or fragments thereof, preferably comprising the light chain variable region CDR sequences SASSRVSYIH (SEQ ID NO:1); GTSTLAS (SEQ ID NO:2); and QQWSYNPPT (SEQ ID NO:3); and the heavy chain variable region CDR sequences DYYMS (SEQ ID NO:4); FIANKANGHTTDYSPSVKG (SEQ ID NO:5); and DMGIRWNFDV (SEQ ID NO:6). The Class I anti-CEA antibodies or fragments are useful for treating diseases, such as cancer, wherein the diseased cells express CEACAM5 and/or CEACAM6 antigens. The Class I anti-CEA antibodies or fragments are also of use for interfering with specific processes, such as metastasis, invasiveness and/or adhesion of cancer cells, or for enhancing sensitivity of cancer cells to cytotoxic agents and have favorable effects on the survival of subjects with cancer.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 16, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 8282934
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 9, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8277817
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 2, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8268319
    Abstract: The invention relates to therapeutic conjugates with improved ability to target various cancer cells containing a targeting moiety and a therapeutic moiety. The targeting and therapeutic moieties are linked via an acid cleavable linkage that increases therapeutic efficacy of the immunoconjugate.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: September 18, 2012
    Assignee: Immunomedics, Inc.
    Inventor: Serengulam V. Govindan
  • Patent number: 8268317
    Abstract: The invention relates to therapeutic conjugates with improved ability to target various diseased cells containing a targeting moiety (such as an antibody or antibody fragment), a linker and a camptothecin as a therapeutic moiety, and further relates to processes for making and using the said conjugates.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 18, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, David M. Goldenberg, Sung-Ju Moon
  • Patent number: 8268312
    Abstract: The present invention provides humanized, chimeric and human anti-alpha-fetoprotein antibodies, fusion proteins, and fragments thereof. The antibodies, fusion proteins, and fragments thereof, as well as combinations with other suitable antibodies, are useful for the treatment and diagnosis of hepatocellular carcinoma, hepatoblastoma, germ cell tumors carcinoma and other AFP-producing tumors.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 18, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, Zhengxing Qu, David M. Goldenberg
  • Patent number: 8246960
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: August 21, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8216572
    Abstract: The present invention provides a composition comprising naked humanized, chimeric, and human anti-CEA antibodies and a therapeutic agent, which is useful for treatment of CEA expressing cancers and other diseases, and methods of use in treatment using this composition.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 10, 2012
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Hans J. Hansen
  • Patent number: 8211440
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 3, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8202509
    Abstract: The present application discloses compositions and methods of synthesis and use of 68Ga, 18F or 19F labeled molecules of use in PET or MRI imaging. Preferably, the 18F or 19F is conjugated to a targeting molecule by formation of a complex with a group IIIA metal and binding of the complex to a chelating moiety, which may be directly or indirectly attached to the targeting molecule. In other embodiments, the 68Ga, 18F or 19F labeled moiety may comprise a targetable construct used in combination with a bispecific antibody to target a disease-associated antigen. In more preferred embodiments, a chelating moiety or targetable construct may be conjugated to a targeting molecule, such as an antibody or antibody fragment.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: June 19, 2012
    Assignee: Immunomedics, Inc.
    Inventors: William J. McBride, Christopher A. D'Souza, David M. Goldenberg
  • Patent number: 8188239
    Abstract: Provided herein are targetable constructs that are multivalent carriers of bi-specific antibodies, i.e., each molecule of a targetable construct can serve as a carrier of two or more bi-specific antibodies. Also provided are targetable complexes formed by the association of a targetable construct with two or more bi-specific antibodies. The targetable constructs and targetable complexes of the invention are incorporated into biosensors, kits and pharmaceutical compositions, and are used in a variety of therapeutic and other methods.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 29, 2012
    Assignee: Immunomedics, Inc.
    Inventors: Hans J. Hansen, William J. McBride, Zhengxing Qu
  • Patent number: 8168186
    Abstract: Multivalent, multispecific molecules having at least one specificity for a pathogen and at least one specificity for the HLA class II invariant chain (Ii) are administered to induce clearance of the pathogen. In addition to pathogens, clearance of therapeutic or diagnostic agents, autoantibodies, anti-graft antibodies, and other undesirable compounds may be induced using the multivalent, multispecific molecules.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: May 1, 2012
    Assignee: Immunomedics, Inc.
    Inventor: Hans J. Hansen
  • Patent number: 8163291
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 24, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8163887
    Abstract: Humoral and cellular immune responses against tumor cells and infectious agents are induced in a mammal using a vaccine comprising immunoconjugates that comprise antibodies and anti-idiotype antibodies that mimic an epitope of an antigen that is associated with a tumor or an infectious agent. These immunoconjugates also comprise a peptide that contains an epitope of a tumor associated antigen or infectious agent antigen, a peptide that contains a minimal recognition unit of an anti-idiotype antibody, or a peptide that induces a strong major histocompatibility complex-restricted immune response. Antibodies and cytokines also may be used to amplify the immune cascade.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: April 24, 2012
    Assignee: Immunomedics, Inc.
    Inventor: Hans J. Hansen