Patents Represented by Attorney, Agent or Law Firm Richard A. Negin
  • Patent number: 6921738
    Abstract: The present invention is directed to a catalyzed metallic substrate, such as a metal plate. There is a catalyst layer supported on the substrate surface. The article is useful as part of exhaust systems which can be used with small engines for applications such as motorcycles, lawn mowers, chain saws, weed trimmers and the like. The present invention includes methods to prepare the catalyzed metal substrate and methods of use of the catalyzed substrate.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: July 26, 2005
    Assignee: Engelhard Corporation
    Inventors: H. Shinn Hwang, Joseph C. Dettling, Michael P. Galligan, Ronald J. Brown, John J. Mooney
  • Patent number: 6912847
    Abstract: The invention provides low temperature NO2 trap compositions useful for adsorbing NO2 from a gas stream at lower temperatures, and releasing the NO2 at higher temperatures. The low temperature trap compositions are useful for incorporation into a diesel exhaust system equipped with a soot filter. The NO2 from the diesel exhaust can be stored when the exhaust temperature is cool, e.g., during startup and at times of low load, and released when the exhaust is at higher temperatures. The released NO2 serves as an effective oxidant for the combustion of soot deposited on the soot filter. These temperatures are significantly lower than those required for the combustion of soot using O2 as an oxidant. The methods of the invention thereby provide a method for regenerating the soot filter within operating temperature ranges typical of diesel engine exhaust systems.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 5, 2005
    Assignee: Engelhard Corporation
    Inventor: Michel Deeba
  • Patent number: 6914026
    Abstract: The present invention is directed to an iron-promoted zeolite beta catalyst useful in the selective catalytic reduction of nitrogen oxides with ammonia in which the iron-promoted zeolite beta is treated so as to provide increased amounts of the iron promoter in the form of Fe(OH). The stabilized zeolite is formed by cation exchange of an iron salt into a zeolite beta which has a reduced sodium content such as by exchanging a sodium beta with ammonium or hydrogen cations. A zeolite beta having a reduced carbon content and a Si/Al ratio of no more than 10 also increases the Fe(OH) content of the iron-promoted catalyst. The iron-promoted catalyst which has the iron in the form of Fe(OH) is characterized by a peak at 3680±5 cm?1 in the IR spectra.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: July 5, 2005
    Assignee: Engelhard Corporation
    Inventors: Pascaline H. Tran, Xinsheng Liu, James M. Chen
  • Patent number: 6826906
    Abstract: A diesel engine aftertreatment exhaust system uses catalyzed soot filters for particulate matter reduction and urea SCR catalysts for NOx reduction on diesel engines in a combined system to lower particulate matter and NOx at the same time. With this integral emission control system, diesel engines are able to meet ultra low emission standards.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: December 7, 2004
    Assignee: Engelhard Corporation
    Inventors: Ramesh M. Kakwani, Kenneth C. Voss, Joseph A. Patchett, Karl R. Grimston
  • Patent number: 6777370
    Abstract: The present invention relates to a layered catalyst composite useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved catalysts of the type generally referred to as “three-way conversion” catalysts. The layered catalysts trap sulfur oxide contaminants which tend to poison three-way conversion catalysts used to abate other pollutants in the stream. The layered catalyst composites of the present invention have a sulfur oxide absorbing layer before or above a nitrogen oxide absorbing layer. The layered catalyst composite comprises a first layer and a second layer. The first layer comprises a first support and at least one first platinum component. The second layer comprises a second support and a SOx sorbent component, wherein the SOx sorbent component is selected from the group consisting of MgAl2O4, MnO, MnO2, and Li2O.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 17, 2004
    Assignee: Engelhard Corporation
    Inventor: Shau-Lin F. Chen
  • Patent number: 6764665
    Abstract: The present invention relates to a layered catalyst composite of the type generally referred to as a three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides. The structure of the layered catalyst composite of the present invention is designed wherein there are three layers in conjunction with a carrier: a first layer deposited on the carrier and comprising a high surface area refractory metal oxide; a second layer deposited on the first layer and comprising palladium and/or platinum deposited on a high surface area refractory metal oxide, and having substantially no oxygen storage components; and a third layer deposited on the second layer and comprising platinum and/or rhodium as well as an oxygen storage component, deposited on a high surface area refractory metal oxide.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: July 20, 2004
    Assignee: Engelhard Corporation
    Inventors: Michel Deeba, John J. Steger, Harold N. Rabinowitz, John S. Foong
  • Patent number: 6742330
    Abstract: A diesel powered vehicle is provided with an SCR system which uses an external reducing reagent to convert NOx emissions in a manner which accounts for the effects of NOx transient emissions on the reducing catalyst. Actual NOx emissions produced by the engine are filtered using a variable NOx time constant in turn correlated to the reductant/NOx storage capacity of the reducing catalyst at its current temperature to account for changes in the SCR system attributed to NOx transient emissions. Catalyst temperature is filtered using a variable catalyst time constant corresponding to current space velocity of the exhaust gas to account for changes in the catalyst temperature attributed to NOx transient emissions. The reductant is metered on the basis of the filtered, corrected NOx concentration applied at a NSR ratio based, in turn, on the filtered, corrected reducing catalyst temperature.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: June 1, 2004
    Assignees: Engelhard Corporation, TNO Automotive
    Inventor: Mathijs Van Genderen
  • Patent number: 6737036
    Abstract: Composite of at least two metal oxides in the form of Primary Particles and a support having a particle size greater than the Primary Particles used in the formation of a catalyst composition for the treatment of a pollutant containing gas.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 18, 2004
    Assignee: Engelhard Corporation
    Inventors: Joseph C. Dettling, Joseph H-Z. Wu
  • Patent number: 6727202
    Abstract: A catalytic trap disposed in an exhaust passage of an internal combustion engine which is operated with periodic alternations between lean and stoichiometric or rich conditions, for abatement of NOx in an exhaust gas stream which is generated by the engine. The trap comprises a catalytic trap material and a refractory carrier member on which the catalytic trap material is disposed. The catalytic trap material comprises: (i) a refractory metal oxide support; (ii) a catalytic component effective for promoting the reduction of NOx under stoichiometric or rich conditions; and (iii) a NOx sorbent effective for adsorbing the NOx under lean conditions and desorbing and reducing the NOx to nitrogen under stoichiometric or rich conditions. The NOx sorbent comprises a metal oxide selected from the group consisting of one or alkali metal oxides, alkaline earth metal oxides and mixtures of one or more alkali metal oxides and alkaline earth metal oxides.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: April 27, 2004
    Assignee: Engelhard Corporation
    Inventors: Michel Deeba, Shau-Lin F. Chen, John K. Hochmuth, Patrick L. Burk, Xinyi Wei
  • Patent number: 6727097
    Abstract: An article, apparatus and method for simulating poisoning and deactivating catalysts with catalyst poison compounds at least one catalyst poison compound selected from the group consisting of a compound comprising phosphorous, a compound comprising zinc compound and a compound comprising phosphorous and zinc.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: April 27, 2004
    Assignee: Engelhard Corporation
    Inventors: Sanath V. Kumar, James Rogalo
  • Patent number: 6699448
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group II metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6689709
    Abstract: The present invention is directed to a metal-promoted zeolite beta catalyst useful in the selective catalytic reduction of nitrogen oxides with ammonia in which the zeolite beta is pre-treated so as to provide the zeolite with improved hydrothermal stability. The stabilized beta zeolite is provided by incorporating into the zeolite structure non-framework aluminum oxide chains. The aluminum oxide chains can be incorporated into the zeolite structure by a unique steaming regimen or by treatment with rare earth metals, such as cerium. The treatment process is unlike well-known methods of dealuminizing zeolites for the purpose of increasing the silica to alumina ratio. In the present invention, the non-framework aluminum oxide is characterized by FT-IR by a peak at 3781±2 cm−1, which when present, stabilizes the zeolite against further dealumination such as under oxidizing and harsh hydrothermal conditions.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: February 10, 2004
    Assignee: Engelhard Corporation
    Inventors: Pascaline H. Tran, Xinsheng Liu, James M. Chen, Gerard D. Lapadula, Howard Furbeck
  • Patent number: 6662553
    Abstract: A diesel powered vehicle is provided with an SCR system which uses an external reducing reagent to convert NOx emissions in a manner which accounts for the effects of NOx transient emissions on the reducing catalyst. Actual NOx emissions produced by the engine are filtered using a variable NOx time constant in turn correlated to the reductant/NOx storage capacity of the reducing catalyst at its current temperature to account for changes in the SCR system attributed to NOx transient emissions. Catalyst temperature is filtered using a variable catalyst time constant corresponding to current space velocity of the exhaust gas to account for changes in the catalyst temperature attributed to NOx transient emissions. The reductant is metered on the basis of the filtered, corrected NOx concentration applied at a NSR ratio based, in turn, on the filtered, corrected reducing catalyst temperature.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: December 16, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph A. Patchett, Rudolfus Petrus Verbeek, Karl Richard Grimston, Gary Wayne Rice, John Lawrence Calabrese, Mathijs Van Genderen
  • Patent number: 6586254
    Abstract: An article, apparatus and method for simulating poisoning and deactivating catalysts with catalyst poison compounds at least one catalyst poison compound selected from the group consisting of a compound comprising phosphorous, a compound comprising zinc compound and a compound comprising phosphorous and zinc.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: July 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Sanath V. Kumar, Michel Deeba, Patrick L. Burk
  • Patent number: 6585945
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group III metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6581374
    Abstract: A diesel powered vehicle is provided with an SCR system which uses an external reducing reagent to convert NOx emissions in a manner which accounts for the effects of NOx transient emissions on the reducing catalyst. Actual NOx emissions produced by the engine are filtered using a variable NOx time constant in turn correlated to the reductant/NOx storage capacity of the reducing catalyst at its current temperature to account for changes in the SCR system attributed to NOx transient emissions. Catalyst temperature is filtered using a variable catalyst time constant corresponding to current space velocity of the exhaust gas to account for changes in the catalyst temperature attributed to NOx transient emissions. The reductant is metered on the basis of the filtered, corrected NOx concentration applied at a NSR ratio based, in turn, on the filtered, corrected reducing catalyst temperature.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: June 24, 2003
    Assignees: Engelhard Corporation, TNO Automotive
    Inventors: Joseph A. Patchett, Rudolfus Petrus Verbeek, Karl Richard Grimston, Gary Wayne Rice, John Lawrence Calabrese, Mathijs Van Genderen
  • Patent number: 6568179
    Abstract: An apparatus and method for vehicle emissions control are disclosed. More particularly, an apparatus and method for insuring that the temperature of a vehicle's exhaust gas stream entering the underfloor catalytic converter during engine operation does not exceed the temperature at which the capability of the multi-functional catalyst in the converter to absorb NOx starts to fall off. A first temperature sensor is provided in the exhaust outlet leading from the exhaust manifold of the engine and a second temperature sensor is provided in the catalytic converter. The catalytic converter contains a multi-functional catalyst such as a three-way conversion catalyst and a NOx trap as well as a NOx sensor at its outlet for sensing when NOx breakthrough is occurring. The sensors transmit their readings to a controller which transmits signal to a proportional valve located in the exhaust outlet downstream of the first temperature sensor.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: May 27, 2003
    Assignee: Engelhard Corporation
    Inventor: Michel Deeba
  • Patent number: 6548446
    Abstract: A selective catalytic material is used in a method for selective oxidation of carbon monoxide in the presence of hydrocarbons and contains rhodium and a bismuth component either as a supported catalytic material dispersed on a refractory inorganic oxide support or as an unsupported catalytic material prepared, for example, by co-precipitation from a solution containing dissolved bismuth and rhodium salts. The bismuth and rhodium components are present in amounts that provide an atomic ratio of bismuth to rhodium in the range of from about 0.1:1 to 10:1, e.g., from about 1:1 to 2.5:1. The selective catalytic material is contacted under oxidizing conditions with a gas stream containing carbon monoxide and hydrocarbons.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: April 15, 2003
    Assignee: Engelhard Corporation
    Inventors: Gerald S. Koermer, Linda Hratko
  • Patent number: 6528029
    Abstract: Composite of at least two metal oxides in the form of Primary Particles and a support having a particle size greater than the Primary Particles used in the formation of a catalyst composition for the treatment of a pollutant containing gas.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: March 4, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph C. Dettling, Joseph H-Z. Wu
  • Patent number: 6497848
    Abstract: A catalytic trap (10, 110) effective for conversion of NOx in an exhaust gas stream is inert to high-temperature reaction with basic oxygenated compounds of lithium, sodium or potassium. The catalytic trap may be substantially free of silica components and may include a catalytic trap material (20, 120) which contains a refractory metal oxide support, e.g., alumina, having dispersed thereon a catalytic component, such as a platinum group metal catalytic component, and a NOx sorbent comprised of one or more of the basic oxygenated compounds. The catalytic trap material is coated onto a suitable carrier member (12, 112), such as one made from stainless steel, titanium, alumina, titania, zirconia or silica-leached cordierite.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 24, 2002
    Assignee: Engelhard Corporation
    Inventors: Michel Deeba, Uwe Dahle, Stefan Brandt, John K. Hochmuth