Patents Represented by Attorney Russell G Lindenfeldar
  • Patent number: 7153803
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of polyethylene containing a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound, an alkyl silicate, and a monoester. The catalyst system may further contain an organoaluminum compound. Also disclosed are methods of making various types of polyethylene involving polymerizing ethylene in the presence of hydrogen and a catalyst system containing a support made from a magnesium compound, an alkyl silicate and a monoester.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 26, 2006
    Assignee: Engelhard Corporation
    Inventors: Zhidong Zhu, Main Chang, Christopher J. Aarons
  • Patent number: 7101473
    Abstract: An additive to enhance the activity of an FCC catalyst containing zeolite and matrix components comprises zeolite microspheres having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The additives formed from microspheres containing a metakaolin and kaolin calcined through its exotherm, the latter calcined kaolin being derived from a kaolin having a high pore volume. Kaolin having a high pore volume can be a pulverized ultrafine kaolin or a kaolin which has been pulverized to have an incipient slurry point less than 57% solids.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 5, 2006
    Assignee: Engelhard Corporation
    Inventor: Michael Thomas Hurley
  • Patent number: 7045485
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: May 16, 2006
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar Pandurang Kelkar, David Stockwell, Samuel Tauster
  • Patent number: 6992037
    Abstract: One aspect of the invention relates to catalyst composite containing a metal catalyst and a specifically defined carbon support containing a carbonaceous material. For example, the carbon support may have a total pore surface area of about 800 m2/g or more and about 2,000 m2/g or less where about 20% or less of the total pore surface area is micro pore surface area. Alternatively the carbon support may have a total pore volume of at least about 0.75 cc/g where about 15% or less of the total pore volume is micro pore volume. In yet another aspect of the invention, the carbon support may have a phosphorus content of about 0.75% by weight or less. In still yet another aspect of the invention, a methods of making and using the catalyst composite are disclosed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: January 31, 2006
    Assignee: Engelhard Corporation
    Inventors: Jian Ping Chen, Charles R. Penquite, Deepak S. Thakur
  • Patent number: 6977067
    Abstract: Provided is a method of generating a hydrogen-rich reformate from a hydrocarbon feed stream comprising olefins and alkanes (e.g., LPG). An inlet gas stream containing the hydrocarbon feed stream and an oxygen containing gas stream, is preheated to a temperature of from 180 to 300° C. The preheated inlet gas stream is then contacted with a sulfur tolerant partial oxidation catalyst to form a pre-reformed gas stream, which is preferably maintained below about 400° C. The pre-reformed gas stream is then subjected to a reforming process to form the hydrogen-rich reformate.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 20, 2005
    Assignee: Engelhard Corporation
    Inventors: Shinn H. Hwang, Robert J. Farrauto
  • Patent number: 6949267
    Abstract: Methods are disclosed for providing a library of composite compositions on a support. The method involves depositing one or more components onto the support on either discrete spaced regions of the support or as a continuous concentration gradients on the surface of the support. The composite samples can be removed from the support by drilling out portions of the coated support so as to yield individual composite tablets containing the support with one or more component layers thereon. By using this method, a vast number of composites can be made and tested simultaneously.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 27, 2005
    Assignee: Engelhard Corporation
    Inventors: Ahmad Moini, Gerald Steven Koermer, Christopher R. Castellano
  • Patent number: 6913739
    Abstract: The invention provides processes for selectively oxidizing carbon monoxide from an input gas stream that contains carbon monoxide, oxygen and hydrogen. The process includes the step of contacting the input gas stream with a preferential oxidation catalyst. The preferential oxidation catalysts are copper-based catalysts containing low concentrations of platinum group metals. In some embodiments, the processes of the invention are conducted using preferential oxidation catalysts having an oxide support on which is dispersed copper or an oxide thereof, a platinum group metal and a reducible metal oxide. In other embodiments, the processes of the invention are conducted with a preferential oxidation catalysts having a cerium oxide support on which is dispersed copper or an oxide thereof and a platinum group metal.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 5, 2005
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Wolfgang F. Ruettinger, Robert J. Farrauto
  • Patent number: 6903050
    Abstract: Provided is a process for preparing a non-pyrophoric catalyst having about 2 to 20 wt. % of a copper component, wherein at least 50 wt. % of the copper component is in the form of a copper oxide, aluminum oxide-spinel. The catalyst can be prepared by forming a mixture of a copper precursor and an alumina precursor, coextruding the mixture, drying the coextrudate and calcining the dried coextrudate at a temperature of at least 600° C. In other aspects, the invention also relates to processes for the activation of copper-based catalysts and for the regeneration of deactivated copper-based catalysts.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 7, 2005
    Assignee: Engelhard Corporation
    Inventors: Oleg M. Ilinich, Wolfgang F. Ruettinger, Ronald T. Mentz, Robert J. Farrauto
  • Patent number: 6872686
    Abstract: A catalytic composition and method of making the same in which a catalytic material has an average pore size distribution sufficiently large to substantially prevent capillary condensation.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: March 29, 2005
    Assignee: Engelhard Corporation
    Inventors: Fred M. Allen, Patrick W. Blosser, Ronald M. Heck, Jeffrey B. Hoke, Terence C. Poles, John J. Steger
  • Patent number: 6863984
    Abstract: A composition and method for improving the adhesion properties of catalytic and adsorptive compositions to a substrate through the addition of clay and/or silicone binder is disclosed. Preferably, the composition includes manganese dioxide and attapulgite clay and/or a silicone polymer which is adhered to a metal substrate, such as a motor vehicle radiator.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: March 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Jeffrey B. Hoke, Ronald M. Heck
  • Patent number: 6849572
    Abstract: A layered catalyst member useful for catalytically generating a hydrogen-rich gas from a hydrocarbon feed. The layered catalyst member comprises a monolith substrate containing at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst. The steam reforming catalyst comprises one or more platinum group metal components and the catalytic partial oxidation catalyst comprises palladium components.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: February 1, 2005
    Assignee: Engelhard Corporation
    Inventors: H. Shinn Hwang, Robert J. Farrauto
  • Patent number: 6849187
    Abstract: Disclosed is a heavy metal removal media containing ferric hydroxide having unique levels of microporosity and mesoporosity/macroporosity, and/or a specific average particle size and/or granule size. The ferric hydroxide is made by simultaneously combining in a vessel at least one iron salt and at least one hydroxide compound, and then recovering the ferric hydroxide. The ferric hydroxide made by simultaneous mixing is effective in removing heavy metals, such as arsenic, from aqueous systems.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: February 1, 2005
    Assignee: Engelhard Corporation
    Inventor: Thomas J. Shaniuk
  • Patent number: 6818254
    Abstract: A method and apparatus for treating the atmosphere comprising moving a vehicle through the atmosphere, the vehicle having at least one atmosphere contacting surface and a pollutant treating composition located on said surface. A specific embodiment comprises coating a motor vehicle radiator with pollutant treating catalyst.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: November 16, 2004
    Assignee: Engelhard Corporation
    Inventors: Jeffrey B. Hoke, Fred M. Allen, Patrick W. Blosser, Zhicheng Hu, Ronald M. Heck
  • Patent number: 6790432
    Abstract: Provided is a method and apparatus for producing hydrogen from an input gas stream containing carbon monoxide and steam that includes contacting the input gas stream with a catalyst. The catalyst contains an inorganic oxide support; a platinum group metal dispersed on the inorganic oxide support; and a methane suppressing dispersed on the inorganic oxide support. The methane suppressing component is selected from the group consisting of oxides of tin, oxides of gallium and combinations thereof. Also provided are preferred catalyst preparations.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 14, 2004
    Assignee: Engelhard Corporation
    Inventors: Wolfgang F. Ruettinger, Robert J. Farrauto
  • Patent number: 6761875
    Abstract: Rare earth silicate octahedral/tetrahedral molecular sieves with the octahedral chains as rare earth centers exhibit enhanced thermal and hydrothermal stability.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: July 13, 2004
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Richard M. Jacubinas
  • Patent number: 6699529
    Abstract: A method for coating vehicular radiators with an ozone depleting manganese oxide catalyst in slurry form utilizes a robotic arm with multiple spray heads for spraying the face of the radiator. Each head is in fluid communication with its own dedicated peristaltic pump. The pumps are independently valved into and out of fluid communication with select heads as a function of the spray pattern effected by robotic arm movement.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: James William Garner, Donald Allan Craig, Jeffrey Barmont Hoke, Dieter Lischitzki
  • Patent number: 6699404
    Abstract: A massive body, e.g., a tablet, for producing a solution of chlorine dioxide when the massive body is added to liquid water. The massive body comprises a metal chlorite such as sodium chlorite, an acid source such as sodium bisulfate and a source of free halogen such as the sodium salt of dichloroisocyanuric acid or a hydrate thereof. The concentration of free halogen in the solution will be: (a) less than the concentration of chlorine dioxide in said solution on a weight basis and the ratio of the concentration of chlorine dioxide to the sum of the concentrations of chlorine dioxide and chlorite anion in said solution is at least 0.25:1 by weight; or (b) equal to or greater than the concentration of chlorine dioxide in said solution on a weight basis and the ratio of the concentration of chlorine dioxide to the sum of the concentrations of chlorine dioxide and chlorite anion in said solution is at least 0.50:1 by weight.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: Barry K. Speronello, Gerald S. Koermer, Appadurai Thangaraj, Ahmad Moini
  • Patent number: 6685898
    Abstract: A catalytic composition and method of making the same in which a catalytic material has an average pore size distribution sufficiently large to substantially prevent capillary condensation.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: February 3, 2004
    Assignee: Engelhard Corporation
    Inventors: Fred M. Allen, Patrick W. Blosser, Ronald M. Heck, Jeffrey B. Hoke, Terence C. Pole, John J. Steger
  • Patent number: 6685910
    Abstract: Novel morphologies are provided for aluminosilicate zeolite ion-exchange materials useful for static water softening. The zeolites are provided in the form of large aggregates composed of submicron zeolite crystals. Rapid exchange rates, high hardness ion capacity and increased attrition resistance characterize the zeolite ion exchangers.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: February 3, 2004
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Tadeusz W. Langner, Jacqueline S. Curran, Valerie A. Bell
  • Patent number: 6676850
    Abstract: Method, composition and system for generating chlorine dioxide gas in a controlled release manner by combining at least one metal chlorite and a dry solid hydrophilic material that reacts with the metal chlorite in the presence of water vapor, but does not react with the metal chlorite in the substantial absence of liquid water or water vapor to produce chlorine dioxide gas in a sustained amount of from about 0.001 to 1,000 ppm.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 13, 2004
    Assignee: Engelhard Corporation
    Inventors: Barry K. Speronello, Appadurai Thangaraj, Xiaolin Yang