Patents Represented by Attorney Theresa A. Takeuchi
  • Patent number: 8065001
    Abstract: Implantable systems, and methods for use therewith, are provided for using an implantable sensor for detecting body position and/or body movement, and using what is learned therefrom to improve accuracy of an implantable sensor that is sensitive to at least one of body position and/or body movement. Also provided are implantable systems, and methods for use therewith, that detect body position and/or body movement in order to monitor a condition and/or detect specific episodes. Other embodiments are also provided.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Eric Falkenberg
  • Patent number: 8065005
    Abstract: An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 22, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Louis Wong, Cem Shaquer, Gene A. Bornzin, Euljoon Park, Andre Walker, Dorin Panescu, Jiong Xia, Shahrooz Shahparnia
  • Patent number: 8038866
    Abstract: Anode foil, preferably aluminum anode foil, is etched using a process of treating the foil in an electrolyte bath composition comprising a sulfate and a halide, such as sodium chloride. The anode foil is etched in the electrolyte bath composition by passing a charge through the bath. The etched anode foil is suitable for use in an electrolytic capacitor.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 18, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Xiaofei Jiang, Tearl Stocker, R. Jason Hemphill, Thomas F. Strange
  • Patent number: 8033999
    Abstract: A method of monitoring myocardial stability includes determining a window length representing an acceptable time period between potential start times associated with at least two physiologic indices and monitoring multiple physiologic indices representative of myocardial stability. Predetermined variations in each of the physiologic indices denote the potential start times and potential end times for candidate events that are indicative of myocardial instability. The method further includes identifying the potential start times associated with at least two of the physiologic indices and declaring at least one of the candidate events to be an actual event of myocardial instability based on the window length and a time period between the potential start times identified by the identifying operation.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 11, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Cecilia Qin Xi
  • Patent number: 8027722
    Abstract: Multifocal PVCs are detected and prevented. If the PVCs being detected have variable coupling intervals and significantly different morphologies, they are deemed multifocal and a prevention therapy is activated for a short period of time. In another embodiment, multifocality and the need for prevention therapy are determined based on morphology alone. Feedback mechanisms are used to adjust thresholds for coupling interval and morphology if the PVCs are considered not multifocal, but ventricular arrhythmia still occurs. In an embodiment, only morphologies are compared.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: September 27, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Yelena Nabutovsky
  • Patent number: 8010196
    Abstract: An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 30, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Louis Wong, Cem Shaquer, Gene A. Bornzin, Euljoon Park, Andre Walker, Dorin Panescu, Jiong Xia, Shahrooz Shahparnia
  • Patent number: 8005533
    Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for assessing a patients' myocardial electrical stability. Implanted electrodes are used to obtain an electrogram (EGM) signal, which is used to identify periods when the patient experiences T-wave alternans. Additionally, the EGM signal is used to determine whether premature ventricular contractions (PVCs) cause phase reversals of the T-wave alternans. The patient's myocardial electrical stability is assessed based on whether, and in a specific embodiment the extent to which, PVCs cause phase reversals of the T-wave alternans. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 23, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Taraneh Ghaffari Farazi
  • Patent number: 7974687
    Abstract: Embodiments of the present invention are for use with implantable cardiac devices that discriminate between ventricular tachycardia (VT) and supraventricular tachyarrhythmia (SVT). Discrimination between VT and SVT can be based on: a detected absence, presence or degree of T-wave alternans leading up to the onset of a detected tachycardia; a detected absence, presence or degree of T-wave variability leading up to the onset of the detected tachycardia; and/or a detected cardiac electrical stability leading up to the onset of the detected tachycardia.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: July 5, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Taraneh Ghaffari Farazi, Ruth Lyons
  • Patent number: 7970468
    Abstract: Embodiments of the present invention are for use with implantable cardiac devices that have discriminator parameters that the devices use to discriminate between ventricular tachycardia (VT) and supraventricular tachyarrhythmia (SVT). A user is allowed to select a balance setting that specifies a balance between sensitivity and specificity, where an increase in sensitivity results in a decrease in specificity, and vice versa. In response to the user selecting the balance setting, a value of at least one of the discriminator parameters and/or how at least one of the discriminator parameters is used is automatically adjusted. The more the balance setting favors sensitivity, then the more likely an actual VT will be characterized as VT, but the more likely an actual SVT may be characterized as VT. The more the balance setting favors specificity, then the less likely an actual SVT will characterized as VT, but the less likely an actual VT may be characterizes as VT.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 28, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Eliot L. Ostrow
  • Patent number: 7953479
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 31, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 7949399
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 24, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 7949397
    Abstract: Methods and devices are provided for influencing an amount of food ingested. The methods include applying stochastic resonance stimulation to a stomach to influence a nervous system response using an implantable stimulation device. In one embodiment, a device includes electrodes in communication with a gastric wall capable of delivering stimulation therapy, and a controller adapted to apply stochastic resonance stimulation to a stomach to influence a response of stomach receptors and/or interstitial cells of Cajal. In some embodiments, the implantable device is configured to apply a suprathreshold signal in addition to the stochastic resonance stimulation. In some embodiments, the implantable device is configured to apply an electrical signal in other areas of the nervous system besides the stomach. In some embodiments, the implantable stimulation device is an implantable cardiac stimulation device capable of providing therapy to a heart.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 24, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Brian Jeffrey Wenzel
  • Patent number: 7949398
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 24, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 7945326
    Abstract: An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: May 17, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Louis Wong, Cem Shaquer, Gene A. Bornzin, Euljoon Park, Andre Walker, Dorin Panescu
  • Patent number: 7925349
    Abstract: An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: April 12, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Louis Wong, Cem Shaquer, Gene A. Bornzin, Euljoon Park, Andre Walker, Dorin Panescu, Jiong Xia
  • Patent number: 7925334
    Abstract: In an implantable cardiac device data is processed and stored to conserve storage space and computational resources thereby saving energy expended on these operations. The data being processed may be associated with signals with known and/or predictable patterns. A set of key elements are identified for the signal that allow the signal to be reconstructed without saving a complete time series of data for the signal.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 12, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Taraneh Ghaffari Farazi
  • Patent number: 7917197
    Abstract: A device, such as an implantable cardiac device, and methods for determining exercise diagnostic parameters of a patient are disclosed. Specifically, a maximum observed heart rate of a patient during exercise can be identified when an activity level and a heart rate measurement of the patient exceed predetermined thresholds. Included are methods for filtering out premature heartbeats or noise from the maximum heart rate determination. Methods of determining other exercise parameters, such as workload are also disclosed. The device includes hardware and/or software for performing the described methods.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 29, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Michael Paris
  • Patent number: 7909768
    Abstract: Methods, systems and devices are provided for reducing the amount of data, processing and/or power required to analyze hemodynamic signals such as photoplethysmography (PPG) signals, pressure signals, and impedance signals. In response to detecting a specific event associated with a cyclical body function, a hemodynamic signal is continuously sampled during a window following the detecting of the specific event, wherein the window is shorter than a cycle associated with the cyclical body function. The hemodynamic signal is then analyzed based on the plurality of samples.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: March 22, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Robert G. Turcott
  • Patent number: 7869869
    Abstract: In one embodiment, an implantable stimulation apparatus includes a vagal nerve stimulator configured to generate electrical pulses below a cardiac threshold of a heart, and an electrode coupled to the vagal nerve stimulator which is configured to transmit the electrical pulses below the cardiac threshold, to a vagal nerve so as to inhibit injury resulting from an ischemia and/or reduce injury resulting from an ischemia. In another embodiment, an implantable stimulation apparatus includes a vagal nerve stimulator configured to generate electrical pulses below a cardiac threshold, and includes an electrode, which is coupled to the vagal nerve stimulator and configured to transmit electrical pulses to a vagal nerve so as to reduce a defibrillation threshold of the heart.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: January 11, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Taraneh Ghaffari Farazi
  • Patent number: 7848816
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 7, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Taraneh Ghaffari Farazi