Patents Represented by Attorney, Agent or Law Firm Wade J. Brady, III
  • Patent number: 7570182
    Abstract: A novel and useful apparatus for and method of improving the quantization resolution of a time to digital converter in a digital PLL using noise shaping. The TDC quantization noise shaping scheme is effective to reduce the TDC quantization noise to acceptable levels especially in the case of integer-N channel operation. The mechanism monitors the output of the TDC circuit and adaptively generates a dither (i.e. delay) sequence based on the output. The dither sequence is applied to the frequency reference clock used in the TDC which adjusts the timing alignment between the edges of the frequency reference clock and the RF oscillator clock. The dynamic alignment changes effectively shape the quantization noise of the TDC. By shaping the quantization noise, a much finer in-band TDC resolution is achieved resulting in the quantization noise being pushed out to high frequencies where the PLL low pass characteristic effectively filters it out.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mahbuba Moyeena Sheba, Robert B. Staszewski, Khurram Waheed
  • Patent number: 7569486
    Abstract: A system and method of preventing pattern lifting during a trench etch/clean process is disclosed. A first layer comprising a first dip is formed over a first via pattern. A trench resist layer is formed. The trench resist layer is patterned with a trench reticle to produce a second via pattern in the trench resist layer over the first via pattern. A photo resist over the first via pattern is opened during a trench processing. Thus, an additional pattern added on a trench pattern reticle is used to open, i.e., remove resist over, a huge via feature area causing under layer dip.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Yong Seok Choi, Jeannette Michelle Jacques
  • Patent number: 7571094
    Abstract: An electronic circuit includes storage circuitry and a speech coder coupled with the storage circuitry to have a codebook with sets of track location numbers for respective pulses, the speech coder operable to identify a group of track location numbers in the codebook substantially equally spaced from each other by a pitch lag amount, and make a selection from the group of track location numbers of a selected track location number. Other electronic circuits, processes, methods, devices and systems are disclosed and claimed.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Chanaveeragouda V Goudar
  • Patent number: 7570646
    Abstract: A slave interface unit controls the exchange of data between a master processing unit and a plurality of slave processing units operating in the asynchronous transfer mode (ATM) of operation. The ATM slave interface unit has a receive unit and a transmit unit that exchange data cells and control signals with the ATM master processing unit. The receive unit and the transmit unit are coupled to a receive buffer storage unit and a transmit buffer storage unit, respectively. The receive buffer storage unit and the transmit buffer storage unit exchange data and control signals with the direct memory access unit. The ATM slave interface unit includes a configuration interface unit having a register that identifies the location in the data cell where the destination address is located and relates the destination address to the particular processing unit or memory location. The receive buffer unit uses the information in the register to determine the destination of the data cell.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Martin Li, Jay B. Reimer, Shakuntala Anjanaiah, Natarajan Seshan, Patrick J. Smith
  • Patent number: 7571419
    Abstract: A design application improves design checking by utilizing a template. During the checking process, the design application divides the design layout into regions. To further improve processing speed, the design application utilizes the template. The template maps the location of the regions of a design layout during a checking process. The template comprises information such as the dimensions and location of the regions in human-readable form. Because the human-readable template is computationally simple to process, the design application may locate, divide, manage, and merge the regions of the design layout more quickly.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Sean C. O'Brien
  • Patent number: 7569464
    Abstract: The present invention provides a method for manufacturing a semiconductor device, which includes forming a gate structure over a substrate, and forming a stack of layers on the substrate and at least partially along a sidewall of the gate structure. In this embodiment, the stack of layers includes an initial layer located over the substrate, a buffer layer located over the initial layer and an offset layer located over the buffer layer. This embodiment of the method further includes removing horizontal segments of the offset layer and the buffer layer using a dry etch and a wet clean, wherein removing includes choosing at least one of an initial thickness of the buffer layer, a period of time for the dry etch or a period of time for the wet clean such that horizontal segments of the initial layer are exposed and substantially unaffected after the dry etch and wet clean.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Karen H. R. Kirmse, Yuanning Chen, Jarvis B. Jacobs, Deborah J. Riley
  • Patent number: 7566627
    Abstract: In accordance with the invention, there are inductors with an air gap, semiconductor devices, integrated circuits, and methods of fabricating them. The method of making an inductor with an air gap can include fabricating a first level of inductor in an intra-metal dielectric layer including one or more inductor loops, one or more vias, and one or more copper bulkhead structures, forming an inter-level dielectric layer over the first level and repeating the steps to form two or more levels of inductor. The method can also include forming an extraction via, forming an air gap between the inductor loops by removing portions of the intra-metal dielectric layer coupled to the extraction via using super critical fluid process, and forming a non-conformal layer to seal the extraction via.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 28, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Phillip D Matz, Stephan Grunow, Satyavolu Srinivas Papa Rao
  • Patent number: 7566652
    Abstract: A semiconductor device 300 includes a metal line 304 formed in a first dielectric layer 302. A capping layer 306 is formed the metal line 304. A second dielectric layer 308 is formed over the first dielectric layer 302 and the metal line 304. A first via 310 is formed in the second dielectric layer 308 and in contact with the metal line 304. A second via 312 is formed in the second dielectric layer 308 and in contact with the metal line 304, and is positioned a distance away from the first via 310. An electrically isolated via 326 is formed in the second dielectric layer 308 and in contact with the metal line 304 and in between the first via 310 and the second via 312. A third dielectric layer 314 is formed over the second dielectric layer 308. First and second trenches 316, 318 are formed in the third dielectric layer 314 and in contact with the first via 310 and the second via 312, respectively. An isolated trench 328 is formed in the third dielectric layer and in contact with the isolated via 326.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 28, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ki-Don Lee, Young-Joon Park, Ennis Takashi Ogawa
  • Patent number: 7566595
    Abstract: Methods and circuits are disclosed for protecting an electronic circuit from ESD damage using an SCR ESD cell. An SCR circuit is coupled to a terminal of an associated microelectronic circuit for which ESD protection is desired. The SCR used in the ESD cell of the invention is provided with a full guardring for shielding the SCR from triggering by fast transients. A resistor is provided at the guardring for use in triggering the SCR at the onset of an ESD event. Exemplary preferred embodiments of the invention are disclosed with silicide-block resistors within the range of about 2-1000 Ohms or less.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: July 28, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Robert Michael Steinhoff
  • Patent number: 7565125
    Abstract: A receiver 30 has an adjustable gain control circuit 32 that provides gain control base on the magnitude of the signal at the input of an analog-to-digital converter 22. The magnitude of a gain increase or decrease can be based on the most significant bits of the analog-to-digital output, indicating whether the analog-to-digital converter is close to saturation, approaching saturation, or well below saturation.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: July 21, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Pascal Audinot, Vincent Roussel
  • Patent number: 7560324
    Abstract: Drain extended MOS transistors (52) and fabrication methods (100) therefor are presented, in which a voltage drop region (80) is provided in a well (82) of a second conductivity type between a channel (78) of a first conductivity type and a drain (74) to inhibit channel hot carrier or direct tunneling degradation of the transistor gate dielectric (64) for high voltage operation. The voltage drop region (80) has more dopants of the first conductivity type and/or fewer dopants of the second conductivity type than does the well (82) so as to shift the high fields away from the transistor gate dielectric (64).
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Pr Chidambaram
  • Patent number: 7560792
    Abstract: Dual gate dielectric layers are formed on a semiconductor substrate for MOS transistor fabrication. A first dielectric layer (30) is formed on a semiconductor substrate (10). A first plasma nitridation process is performed on said first dielectric layer. The first dielectric layer (30) is removed in regions of the substrate and a second dielectric layer (50) is formed in these regions. A second plasma nitridation process is performed on the first dielectric layer and the second dielectric layer. MOS transistors (160, 170) are then fabricated using the dielectric layers (30, 50).
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Rajesh Khamankar, Douglas T. Grider, Hiroaki Niimi, April Gurba, Toan Tran, James J. Chambers
  • Patent number: 7555830
    Abstract: A broken trim die tool detection sensor. The lands of the tie bar die connect with the leads of the unit to form switches. The states of these switches indicate broken die lands or other malfunctions.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 7, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ronald B. Azcarate, Alwin A. Rosete, Jong A. Foronda, Jr.
  • Patent number: 7557021
    Abstract: The present invention provides, in one embodiment, a method for fabricating a microelectronic device. The method comprises implanting a dopant into a gate electrode located on a substrate. The gate electrode has a melting point below a melting point of the substrate. The method also comprises melting the gate electrode to allow the dopant to diffuse throughout the gate electrode. The method further comprises re-solidifying the gate electrode to increase dopant-occupied substitutional sites within the gate electrode.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: July 7, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Amitabh Jain
  • Patent number: 7554867
    Abstract: A memory cell for storing a charge that gives rise to a cell voltage representing a bit value, the memory cell being capable of having the cell voltage boosted to a boost value at a time following reading of the stored charge. The memory cell includes a first capacitor connected between a first node and ground. A second capacitor is connected between a second node and ground, and a first switch is connected between the first node and the second node. A second switch and a third capacitor are connected in series between the first node and the second node, with a terminal of the second switch being connected to the first node, the common connection node of the second switch and the third capacitor comprising a third node. A third switch is connected between the third node and ground. In operation, in a first storage phase the first and third switches are closed and the second switch is open.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: June 30, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Hugh P. McAdams
  • Patent number: 7541275
    Abstract: The present invention provides an interconnect for use in an integrated circuit, a method for manufacturing the interconnect, and a method for manufacturing an integrated circuit including the interconnect. The interconnect (100), among other elements, includes a surface conductive lead (160) located in an opening formed within a protective overcoat (110), and a barrier layer (140) located between the protective overcoat (110) and the surface conductive lead (160), a portion of the barrier layer (140) forming a skirt (145) that extends outside a footprint of the surface conductive lead (160).
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 2, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Betty Shu Mercer, Erika Leigh Shoemaker, Byron Lovell Williams, Laurinda W. Ng, Alec J. Morton, C. Matthew Thompson
  • Patent number: 7537988
    Abstract: A method of fabricating a CMOS integrated circuit includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric and a plurality of gate electrodes thereon in both NMOS and PMOS regions using the surface. A multi-layer offset spacer stack including a top layer and a compositionally different bottom layer is formed and the multi-layer spacer stack is etched to form offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize a thinner offset spacer are covered with a first masking material, and transistors designed to utilize a thicker offset spacer are patterned and first implanted. At least a portion of the top layer is removed to leave the thinner offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize the thicker offset spacer are covered with a second masking material, and the transistors designed to utilize the thinner offset spacer are patterned and second implanted.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 26, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shashank Ekbote, Deborah J. Riley, Borna Obradovic
  • Patent number: 7535104
    Abstract: A metal structure for a contact pad of a wafer or substrate (101), which have copper interconnecting traces (102) surrounded by a barrier metal layer (103). The wafer or substrate is protected by an insulating overcoat (104). In the structure, the barrier metal layer is selectively exposed by a window (110) in the insulating overcoat. A layer of copper (105), adherent to the barrier metal, conformally covers the exposed barrier metal. Preferably, the copper layer is deposited by sputtering using a shadow mask. A layer of nickel (106) is adherent to the copper layer and a layer of noble metal (106) is adherent to the nickel layer. The noble metal may be palladium, or gold, or a palladium layer with an outermost gold layer. Preferably, the nickel and noble metal layers are deposited by electroless plating.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: May 19, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Howard R Test, Donald C Abbott
  • Patent number: 7534676
    Abstract: In the present invention, a PMOS device comprises a channel region formed in {100} silicon with first and second source/drain region disposed on either side of the channel region. The channel region is oriented such that a current flow between the source/drain regions has a <100> direction through the channel region. Dielectric regions create a compressive stress on the channel region perpendicular to the current flow.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 19, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Robert C. Bowen, Yuguo Wang
  • Patent number: 7531464
    Abstract: The invention provides a method of fabricating a semiconductive device. In one aspect, the method comprises heating a gas mixture [225] comprising chlorohydrocarbon having a general formula of CxHxClx, wherein x=2, 3, or 4. The chlorohydrocarbon is heated in a first chamber 210 to a first temperature that substantially disassociates the chlorohydrocarbon. The substantially disassociated chlorohydrocarbon is used to form a film on a semiconductive substrate [235] that is located in a second chamber [215].
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 12, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Jeff White, Jon Holt