Patents Assigned to Advanced Bionics Corporation
  • Publication number: 20070050005
    Abstract: A lead anchor includes a body defining a first opening and a second opening through which a lead can pass. A protrusion and a corresponding depression may be provided within the body that cooperate to form a non-linear path for the lead through the housing to resist movement of the lead within the lead anchor.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 1, 2007
    Applicant: Advanced Bionics Corporation
    Inventor: Reno Lauro
  • Patent number: 7184836
    Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 27, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Paul M Meadows, Carla Mann Woods, Joey Chen, Hisashi Tsukamoto
  • Patent number: 7177701
    Abstract: A lead stimulation/recording system is provided, which is a combination of a permanent DBS stimulating lead and a recording microelectrode. The DBS lead has a lumen extending from the proximal to the distal end of the lead, the lumen having an opening on each end of the lead. The microelectrode is configured and dimensioned to be insertable into the DBS lead from either the distal or proximal opening of the DBS lead, thereby permitting the microelectrode to be placed before, concurrently with, or after placement of the DBS lead. In addition, the system may be used with known microelectrode recording systems and methods of inserting the electrodes, such as the five-at-a-time method, the dual-microdrive method, or the single microdrive method.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: February 13, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Anne M Pianca
  • Patent number: 7177691
    Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithiumion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 13, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Paul M Meadows, Carla Mann Woods, Hisashi Tsukamoto, Joey Chen
  • Patent number: 7177698
    Abstract: An implantable microstimulator configured to be implanted beneath a patient's skin for tissue stimulation employs a bi-directional RF telemetry link for allowing data-containing signals to be sent to and from the implantable microstimulator from at least two external devices. Further, a separate electromagnetic inductive telemetry link allows data containing signals to be sent to the implantable microstimulator from at least one of the two external devices. The RF bidirectional telemetry link allows the microstimulator to inform the patient or clinician regarding the status of the microstimulator device, including the charge level of a power source, and stimulation parameter states. The microstimulator has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end of the case.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: February 13, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Daniel J. Klosterman, Kelly H. McClure, Goran N. Marnfeldt, Jordi Parramon, Matthew I. Haller, Rudolph V. Park
  • Patent number: 7177690
    Abstract: A system and method for detecting the status of a rechargeable battery included within an implantable medical device. The medical device can incorporate a status indicator which signals the user concerning the battery status, e.g., low battery level. The signal may be audible or it may arise from an electrical stimulation that is perceptually distinguished from the operative, therapeutic stimulation. The external programmer may also incorporate a second battery status indicator that is visual, audible, or physically felt. Battery status data may be conveyed on visual displays on the external programmer by uploading this information from the medical device using a bi-directional telemetry link. Such battery status data are helpful to the user to indicate when the battery should be recharged and to the clinician to monitor patient compliance and to determine end-of-useful life of the rechargeable battery.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: February 13, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Carla Mann Woods, James R Thacker, David K. L Peterson
  • Publication number: 20070032839
    Abstract: An implantable microstimulator configured to be implanted beneath a patient's skin for tissue stimulation to prevent and/or treat various disorders, e.g., neurological disorders, uses a self-contained power source such as a primary battery, a rechargeable battery, or other energy sources. For the rechargeable battery, and other energy sources that may require a periodic or occasional replenishment, such recharging or replenishment is accomplished, for example, by inductive coupling with an external device. A suitable bidirectional telemetry link allows the microstimulator system to inform the patient or clinician regarding the status of the system, including the charge level of the power source, and stimulation parameter states. Processing circuitry within the microstimulator automatically controls the applied stimulation pulses to match a set of programmed stimulation parameters established for a particular patient.
    Type: Application
    Filed: September 22, 2006
    Publication date: February 8, 2007
    Applicant: ADVANCED BIONICS CORPORATION
    Inventors: Jordi Parramon, Goran Marnfeldt
  • Patent number: 7174215
    Abstract: A method is provided for determining optimal stimulus pulsewidth and stimulus amplitude for stimulating nerves with at least one electrode (17). The method comprises: providing a predetermined calibration curve comprising a set of pulsewidth and amplitude values; and delivering sets of pulsewidths and amplitude values which are part of the calibration curve to the at least one electrode (17) to determine at least the optimal pulsewidth. A pulsewidth (70) and an amplitude can be efficiently selected that is efficacious and provides an ample clinical usage range (UR).
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: February 6, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Kerry Bradley
  • Patent number: 7174218
    Abstract: An adapter system is provided for adapting and connecting a leadless microstimulator to a separate monopolar, bipolar, or tripolar electrode. Advantageously, the microstimulator does not need to be physically modified. The adapter system encloses the microstimulator and electrically connects the microstimulator to the selected, separate electrode via an extension lead or leads. The adapter has two forms: a monopolar adapter having a single opening or a bipolar adapter having two openings. The separate electrode is equipped with at least one extension lead having a connector that can be inserted into the opening of the monopolar adapter or the bipolar adapter and connect to the microstimulator that is placed within the monopolar or bipolar adapter.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 6, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Janusz A Kuzma
  • Patent number: 7171261
    Abstract: An improved forward-masking method of recording and processing neural responses (“NR”) is provided, wherein the method does not assume a linear system response and does not assume a linear response at the interface between electrodes and tissue. The method of the present invention cancels out non-linearities and/or system hysteresis. Other artifacts such as system cross-talk between stimulation and recording circuits are also canceled out.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: January 30, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Leonid M Litvak, Edward H Overstreet
  • Patent number: 7167754
    Abstract: An alterphasic inverting stimulation strategy for use with a multichannel cochlear implant system consumes less power than similar strategies, yet provides better sound quality. The alterphasic inverting strategy is a strategy wherein stimulation pulses are strictly sequential, and wherein the timing and polarity of the channels is chosen such that positive and negative pulses are alternating in time in accordance with a defined pattern that staggers application of the pulses spatially across all the channels and inverts the polarity of pulses that are near each other either spatially or in time.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: January 23, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Stefaan Peeters, Filiep Vanpoucke
  • Patent number: 7167572
    Abstract: An In The Ear (ITE) microphone improves the acoustic response of a Behind The Ear (BTE) Implantable Cochlear Stimulation (ICS) system during telephone use. An acoustic seal provided by holding a telephone earpiece against the ear provides improved coupling of low frequency (up to about 1 KHz) sound waves, sufficient to overcome losses due to the near field acoustic characteristics common to telephones. In a preferred embodiment, the ITE microphone is connected to a removable ear hook of the BTE ICS system by a short bendable stalk.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: January 23, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: William Vanbrooks Harrison, Lee F Hartley, Philip A Segel, Scott Crawford, C. Geoffrey E Fernald
  • Patent number: 7167751
    Abstract: A method of using a small implantable stimulator(s) with at least two electrodes small enough to have the electrodes located adjacent to the vagus nerve. The small stimulator provides a means of stimulating the vagus nerve when desired, and may be implanted via a minimal surgical procedure.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: January 23, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, James P McGivern
  • Patent number: 7162304
    Abstract: A neuro-stimulation system and method are provided which can monitor EKG signals and provide electrical stimulation. The system comprises a stimulation lead having at least one stimulating electrode on the lead and an IPG having a case and connectors. The connectors can mechanically and electrical connect to the lead and to the at least one stimulating electrode and an EKG electrode can be placed on the stimulating lead. The IPG case may be used variously as an EKG electrode, as well as an indifferent electrode. Alternatively or additionally, a separate, second lead having a second EKG electrode may be connected to the IPG. This second EKG electrode may also double in function as a stimulation electrode.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: January 9, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Kerry Bradley
  • Publication number: 20070003089
    Abstract: An In The Ear (ITE) microphone which converts audio sounds into electrical signals which are then processed by a speech processor to generate electrical pulses to stimulate nerves in the cochlea, improves the acoustic response of a Behind The Ear (BTE) Implantable Cochlear Stimulation (ICS) system during telephone use. An acoustic seal provided by holding a telephone earpiece against the ear provides improved coupling of low frequency (up to about 1 KHz) sound waves, sufficient to overcome losses due to the near field acoustic characteristics common to telephones. In an exemplary embodiment, the ITE microphone is connected to a removable ear hook of the BTE ICS system by a short bendable stalk.
    Type: Application
    Filed: September 11, 2006
    Publication date: January 4, 2007
    Applicant: Advanced Bionics Corporation
    Inventors: William Harrison, Lee Hartley, Philip Segel, Scott Crawford, C. Geoffrey Fernald
  • Publication number: 20070001552
    Abstract: An In The Ear (ITE) microphone improves the acoustic response of a Behind The Ear (BTE) Implantable Cochlear Stimulation (ICS) system during telephone use. The microphone includes means for adjusting the position of the microphone to receive sound waves through a port. An acoustic seal provided by holding a telephone earpiece against the ear provides improved coupling of low frequency (up to about 1 KHz) sound waves, sufficient to overcome losses due to the near field acoustic characteristics common to telephones. In an exemplary embodiment, the ITE microphone is connected to a removable ear hook of the BTE ICS system by a short bendable stalk.
    Type: Application
    Filed: September 11, 2006
    Publication date: January 4, 2007
    Applicant: Advanced Bionics Corporation
    Inventors: William Harrison, Lee Hartley, Philip Segel, Scott Crawford, C. Geoffrey Fernald
  • Patent number: 7155284
    Abstract: Treatment of hypertension includes implantation of the discharge portion(s) of a catheter and/or electrical stimulation electrode(s) adjacent the tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and/or electrical pulses, are supplied by one or more implanted stimulators, through the catheter and possibly also a lead, tunneled subcutaneously between the stimulator and stimulation site. A microstimulator(s) may also/instead deliver electrical stimulation pulses. Stimulation sites include the carotid sinus and carotid body, among other locations. Treatments include drugs used for acute and/or chronic treatment of hypertension. In a number of embodiments, a need for or response to treatment is sensed, and the electrical and/or infusion pulses adjusted accordingly.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: December 26, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, Kelly H. McClure, James R Thacker, James P McGivern
  • Patent number: 7155279
    Abstract: Introducing one or more stimulating drugs to the vagus nerve and/or one or more branches of the vagus nerve to treat movement disorders uses at least one implantable system control unit (SCU) with an implantable pump with at least one infusion outlet. Optional electrical stimulation may additionally be supplied by an implantable signal/pulse generator (IPG) with one or more electrodes. In certain embodiments, a single SCU provides one or more stimulating drugs and the optional electrical stimulation. In some embodiments, one or more sensed conditions are used to adjust stimulation parameters.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: December 26, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, James P McGivern
  • Patent number: 7155289
    Abstract: Audio streaming is made available throughout the signal processing path of the speech processor of a cochlear implant or other audio signal processor. Audio streaming comprises the digitally phase locked playback of a real time n-bit digital audio stream, where n may be a large number, e.g., 8, 12, 16, 24 or 32, that emanates (unsolicited) from an operating speech processor. A number of sample points are made available long the processing chain of a digital signal processor (DSP) used within the speech processor of the cochlear implant. Audio streaming may occur at any sample point. The signal at a selected sample point may be selectively monitored in order to allow appropriate diagnostics to be performed. Audio streaming utilizes an auto-referencing mixed-mode phase locked loop. Such phase locked loop processes an asynchronous stream of digital audio samples that arrive at a designated location, e.g., a selected sample point, at a consistent, but unknown, average rate.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: December 26, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Lee F Hartley
  • Patent number: 7151961
    Abstract: Introducing one or more stimulating drugs to the brain and/or applying electrical stimulation to the brain is used to treat movement disorders. At least one implantable system control unit (SCU) produces electrical pulses delivered via electrodes implanted in the brain and/or drug infusion pulses delivered via a catheter implanted in the brain. The stimulation is delivered to targeted brain structures to adjust the activity of those structures. In some embodiments, one or more sensed conditions are used to adjust stimulation parameters.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 19, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, James P McGivern, Kelly H McClure