Abstract: A cochlear implant including a cochlear lead, an antenna, a stimulation processor, and a magnet apparatus, associated with the antenna, including a case defining a central axis, a magnet frame within the case and rotatable about the central axis of the case, and a plurality of diametrically magnetized magnets that are located in the magnet frame, the magnets defining a longitudinal axis and a N-S direction and being rotatable about the longitudinal axis relative to the magnet frame and biased by the magnet frame to a predetermined N-S rotational orientation.
Type:
Grant
Filed:
December 18, 2015
Date of Patent:
January 14, 2020
Assignee:
Advanced Bionics AG
Inventors:
Sung Jin Lee, Jeryle L. Walter, James George Elcoate Smith, Uli Gommel, Stephanie M. Reed
Abstract: A cochlear implant system includes: an electrode array implanted within a cochlea; an internal processor in communication with the electrode array; an implanted antenna which is electrically coupled to the internal processor; and a modular external headpiece which is removably positioned over the implanted antenna, the modular external headpiece including a core containing a sound processor for processing sound and providing a corresponding signal to the implanted antenna; and a modular component configured to releasably engage the core and supply electrical power to the core.
Type:
Grant
Filed:
May 13, 2017
Date of Patent:
January 7, 2020
Assignee:
Advanced Bionics AG
Inventors:
Scott A. Crawford, Douglas P. Lynch, Carla Mann Woods
Abstract: There is provided a hearing assistance system, comprising an audio streaming device, a first hearing device for stimulating a first ear of a user, and a second hearing device for stimulating a second ear of the user, the audio streaming device comprising an audio input interface for receiving an input stereo audio signal, a unit for analyzing the input stereo audio signal in order to determine at least one azimuthal localization cue by comparing the two channels of the stereo signal, a unit for processing the input stereo audio signal in order to produce an output stereo audio signal, and a unit for supplying one channel of the output stereo audio signal to the first hearing device and for supplying the other channel of the output stereo audio signal to the second hearing device.
Type:
Grant
Filed:
May 11, 2015
Date of Patent:
December 31, 2019
Assignee:
Advanced Bionics AG
Inventors:
Volkmar Hamacher, Stefan Fredelake, Phillipp Hehrmann
Abstract: A magnet apparatus including a case defining a central axis, a magnet frame within the case and rotatable about the central axis of the case, and a plurality of elongate diametrically magnetized magnets that are located in the magnet frame, the magnets defining a longitudinal axis and a N-S direction and being freely rotatable about the longitudinal axis relative to the magnet frame.
Type:
Grant
Filed:
May 5, 2019
Date of Patent:
November 5, 2019
Assignee:
Advanced Bionics AG
Inventors:
Sung Jin Lee, Jeryle L. Walter, James George Elcoate Smith, Uli Gommel, Stephanie M. Reed
Abstract: A binaural hearing system includes a binaural pair of microphones that are configured to be located, respectively, at a first ear and a second ear of a user. The system further includes an interconnected binaural pair of sound processors that are associated with the binaural pair of microphones. The sound processors are configured to preserve an interaural level difference (“ILD”) between a first signal generated by the first microphone and a second signal generated by the second microphone. The sound processors do this by performing a contralateral gain synchronization operation to a first degree with respect to the first and second signals at the first sound processor, and to a second degree with respect to the first and second signals at the second sound processor, where the first degree is distinct from the second degree or at least one of the first and second degrees is a partial degree.
Abstract: A binaural hearing system (“system”) enhances and/or preserves interaural level differences between first and second signals. The system includes first and second audio detectors associated with first and second ears of a user, respectively. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first audio detector and the second signal from a second sound processor via a communication link with the second sound processor. The first sound processor generates a directional signal representative of a spatial filtering of the audio signal detected at the first ear according to an end-fire directional polar pattern and presents an output signal representative of the directional signal to the user at the first ear.
Abstract: A cochlear implant system includes: an electrode array implanted within a cochlea; an internal processor in communication with the electrode array; an implanted antenna which is electrically coupled to the internal processor; and a modular external headpiece which is removably positioned over the implanted antenna, the modular external headpiece including a core containing a sound processor for processing sound and providing a corresponding signal to the implanted antenna; and a modular component configured to releasably engage the core and supply electrical power to the core.
Type:
Grant
Filed:
May 5, 2019
Date of Patent:
October 29, 2019
Assignee:
Advanced Bionics AG
Inventors:
Scott A. Crawford, Douglas P. Lynch, Carla Mann Woods
Abstract: An exemplary sound processor included in a cochlear implant system comprises a control facility that represents a first frequency domain signal to a patient by 1) directing a cochlear implant included in the cochlear implant system to apply, during a first stimulation frame, a first monophasic stimulation pulse representative of a first temporal portion of the first frequency domain signal that corresponds to the first stimulation frame, the first monophasic stimulation pulse having a first polarity, and 2) directing the cochlear implant to apply, during a second stimulation frame that is temporally subsequent to the first stimulation frame, a second monophasic stimulation pulse representative of a second temporal portion of the first frequency domain signal that corresponds to the second stimulation frame, the second monophasic stimulation pulse configured to at least partially charge balance the first monophasic stimulation pulse and having a second polarity opposite the first polarity.
Abstract: An exemplary auditory prosthesis system includes a sound processor apparatus having 1) an interface assembly that includes at least a first contact that facilitates interchangeable connectivity of a plurality of external components to the sound processor apparatus, the plurality of external components including a programming system, and 2) a control module communicatively coupled to the first contact and that communicates with each of the plurality of external components by way of the first contact. The exemplary auditory prosthesis system may also include a wireless module configured to be interchangeably connected to the interface assembly in place of the programming system, wherein, while the wireless module is interchangeably connected to the interface assembly, the wireless module is communicatively coupled to the control module by way of the first contact. Corresponding auditory prosthesis systems and methods are also described.
Type:
Grant
Filed:
March 21, 2014
Date of Patent:
October 29, 2019
Assignee:
Advanced Bionics AG
Inventors:
Guillermo A. Calle, Lakshmi N. Mishra, Lee F. Hartley
Abstract: A headpiece included within a cochlear implant system includes a housing, an interface assembly disposed within the housing and communicatively coupled to a sound processor, and electronic circuitry disposed within the housing. The interface assembly receives, from the sound processor, direct current (DC) power and a self-clocking differential signal comprising a data signal encoded with a clock signal at a clock frequency. The electronic circuitry is configured to recover the data signal and the clock signal from the self-clocking differential signal, to generate synthesized clock signals at first and second carrier frequencies based on the recovered clock signal, to wirelessly transmit alternating current (AC) power at the first carrier frequency based on the DC power, and to wirelessly transmit a data-modulated AC signal at the second carrier frequency based on the recovered data signal. The AC power and data are transcutaneously transmitted to a cochlear implant implanted within a patient.
Abstract: A cochlear implant including a cochlear lead, an antenna, a processor case, and a printed circuit board assembly located within the processor case. The processor case may include a base with a bottom wall and first and second side walls that together define a one-piece, unitary structure, a first end wall, attached to the bottom wall and to the first and second side walls, including a first plurality of feedthrough pins, a second end wall, attached to the bottom wall and to the first and second side walls, including a second plurality of feedthrough pins, and a cover attached to the first and second side walls and to the first and second end walls.
Type:
Grant
Filed:
January 21, 2015
Date of Patent:
August 27, 2019
Assignee:
Advanced Bionics AG
Inventors:
Thomas Santogrossi, Jian Xie, Lin Li, Markus Heerlein
Abstract: An exemplary sound processor included in a cochlear implant system associated with a patient 1) receives, from a fitting system while the sound processor is communicatively coupled to the fitting system, a command that sets a control parameter associated with the cochlear implant system to an initial value and data representative of a target value associated with the control parameter, 2) detects a decoupling of the sound processor from the fitting system, the decoupling resulting in the sound processor being in a non-fitting state, and 3) gradually adjusts, while the sound processor is in the non-fitting state, the control parameter from the initial value towards the target value in accordance with an adaption time course associated with the control parameter. Corresponding systems and methods are also disclosed.
Abstract: An exemplary sound processor included in a cochlear implant system used by a patient generates a spectral input signal representative of spectral energy contained within a frequency band of an audio signal presented to the patient. The sound processor determines whether a spectral energy level of the spectral input signal exceeds a predetermined system noise threshold that is based on a characterization of system noise generated by the cochlear implant system within the frequency band. The sound processer then generates a spectral output signal by 1) including the spectral input signal in the spectral output signal if the spectral energy level exceeds the predetermined system noise threshold, and 2) excluding the spectral input signal from the spectral output signal if the spectral energy level does not exceed the predetermined system noise threshold. Corresponding methods and systems are also disclosed.
Type:
Grant
Filed:
March 24, 2017
Date of Patent:
July 30, 2019
Assignee:
Advanced Bionics AG
Inventors:
Leonid M. Litvak, Eugene Kim, John Norris
Abstract: An exemplary system includes a processing facility and a control facility. The processing facility is configured to 1) divide an audio signal presented to a cochlear implant patient into a plurality of analysis channels each containing a frequency domain signal, and 2) maintain data representative of a crossover frequency. The control facility is configured to 1) direct a cochlear implant to apply electrical stimulation representative of each frequency domain signal included in a plurality of low frequency analysis channels located below the crossover frequency in accordance with a low frequency stimulation strategy that includes a degree of focusing, and 2) direct the cochlear implant to apply electrical stimulation representative of each frequency domain signal included in a plurality of high frequency analysis channels located above the crossover frequency in accordance with a high frequency stimulation strategy that includes a lesser degree of focusing than the low frequency stimulation strategy.
Abstract: An exemplary auditory prosthesis system includes a sound processor apparatus that is configured for external use by a patient and includes 1) a position sensor that detects a positioning of the sound processor apparatus and 2) a control module that is communicatively coupled to the position sensor and performs a predetermined action with respect to the auditory prosthesis system in accordance with the detected positioning of the sound processor apparatus. Corresponding auditory prosthesis systems and methods are also described.
Abstract: A binaural cochlear implant system (system) includes first and second microphones associated with first and second ears of a patient, respectively. The microphones detect an audio signal presented to the patient and output first and second signals representative of the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first microphone and the second signal from a second sound processor by way of a communiation link with the second sound processors. The first sound processor generates first and second fine structure signals representative of fine structure information of the first and second fine structure signals, respectively, and generates a timing pulse signal based on the first and second fine structure signals. The first sound processor uses the timing pulse signal to represent to the patient an interaural time difference between the first and second signals.
Abstract: A cochlear implant is disclosed including a cochlear lead, an antenna, a stimulation processor, a magnet apparatus, associated with the antenna, including a case, a divider, and a plurality of magnetic material particles that are movable relative to one another within sub-volumes defined by the divider.
Type:
Grant
Filed:
May 24, 2016
Date of Patent:
May 28, 2019
Assignee:
Advanced Bionics AG
Inventors:
Sung Jin Lee, James George Elcoate Smith