Abstract: A method for adjusting play in a high-lift system of an aircraft with several flaps, moved by a drive unit with the aid of driving stations connected to a driveshaft, includes disengaging the mechanical connections between the driveshaft and the driving stations in the first position, displacing the individual drive levers by mechanically driving a gear input of the associated rotary actuator such that the individual drive levers come into mechanical contact with a stop in a second position, spaced apart from the first position, and are pretensioned by a certain torque, rotationally fixing the gear inputs of the rotary actuators, adapting the length of connecting links between the respective drive levers and a support arm carrying the associated flap such that a position of the associated flap corresponding to the position of the stop is reached, and reconnecting the driving stations to the driveshaft pretensioned to have no play.
Abstract: An aircraft air conditioning system comprises a process air line configured to supply compressed process air provided by a process air source to an air conditioning unit of the aircraft air conditioning system and a trim air line branching off from the process air line upstream of the air conditioning unit and being configured such that trim air flows through the trim air line, the trim air having been branched off from the compressed process air flowing through the process air line. A compressor is arranged in the trim air line and is configured to compress the trim air flowing through the trim air line. A turbine of the aircraft air conditioning system is configured to drive the compressor. A cabin exhaust air line is configured to supply cabin exhaust air discharged from an aircraft cabin to the turbine for driving the turbine.
Type:
Grant
Filed:
May 19, 2015
Date of Patent:
November 7, 2017
Assignees:
Airbus Operations S.L., Airbus Operations GmbH
Inventors:
Holger Bammann, Frank Klimpel, Dariusz Krakowski, Anton Mendez-Diaz
Abstract: A method for reinforcing a substrate or textile of a core structure of a component with the following method steps: a continuous semi-finished product is fed, via a feed means, into a cartridge of a conveying means which comprises a plurality of cartridges; the continuous semi-finished product is cut to length using a cutting means in order to produce a cut, reinforcing semi-finished product which is received in the cartridge; the cartridge is conveyed to a machining means; the cut, reinforcing semi-finished product is sharpened using the machining means; the cartridge is conveyed to a textile or substrate to be reinforced of a core structure; and the sharpened semi-finished product is shot into the textile or substrate of a core structure by a stud-shooting means.
Type:
Grant
Filed:
April 29, 2011
Date of Patent:
November 7, 2017
Assignee:
Airbus Operations GmbH
Inventors:
Gregor Christian Endres, Hans-Jurgen Weber
Abstract: A method for starting up electric or electronic devices, in particular devices in or for an aircraft or spacecraft, including: supplying at least one location identification which contains at least one piece of information about the location of a respective device; detecting a supplied location identification for one device in each case; transmitting the detected location identification to the respective device; and parameterizing the respective device by means of the transmitted location identification. The present invention also provides a start-up apparatus, a server system and a system.
Abstract: An aircraft nacelle comprising a first duct secured to an air intake and a second duct secured to a power plant. The two ducts are arranged end-to-end and connected by a connection. The connection comprises a bracket which extends between a first region for connecting to the power plant and a second region for connecting to the air intake, and which comprises a J-shaped profile in longitudinal planes, having at least one curved portion offset towards the outside of the nacelle with respect to the connecting regions.
Abstract: In a communications network including aircraft in flight and at least one ground station, which constitute communication nodes of the network, data are transmitted from a source node to a destination node following a non-predetermined path through the network that includes at least one node which is a so-called intermediate aircraft. Before transmitting data from a transmitting node to at least one receiving node, it envisages a step of selecting the receiving node defining a portion of the path without knowledge of the next portion of the path.
Type:
Grant
Filed:
March 14, 2013
Date of Patent:
October 31, 2017
Assignees:
Airbus Operations (S.A.S.), Airbus (S.A.S.)
Abstract: A power management system includes an electrical power supply input configured to be coupled to an electrical power supply, a first power supply bus bar coupled to the power supply input, a power management device coupled to the first power supply bus bar, at least one primary electrical equipment including a primary load being coupled in parallel to the power management device, and at least one secondary electrical equipment including a secondary load being coupled in parallel to the power management device. The power manager device is configured to supply electrical power to the at least one secondary electrical equipment, to supply electrical power to the at least one primary electrical equipment, and to deactivate the power supply to the at least one secondary electrical equipment, as long as the at least one primary electrical equipment is supplied with electrical power.
Abstract: A method of manufacturing a plurality of reinforcing element preforms, involving the steps of: positioning reinforcing elements on the external surface of a die; assembling the reinforcing elements thus positioned with one another so as to form a textile sleeve with a longitudinal axis and surrounding the die; moving the sleeve longitudinally toward a multi-cavity mandrel having an elongate overall shape, the multi-cavity mandrel having on its external surface a plurality of longitudinal cavities which are distributed, when viewed in cross section, around the periphery of the external surface; forming the sleeve on the plurality of peripheral cavities so that the sleeve conforms to the shape of the multi-cavity mandrel and thus adopts the shape of a set of reinforcing element preforms.
Abstract: A method for emergency ventilating and pressurizing an aircraft cabin comprises determining a cabin pressure within the aircraft cabin and determining an ambient pressure in an aircraft environment. Descent of the aircraft is initiated when the cabin pressure falls below a predetermined threshold value. A supply of ambient air from the aircraft environment into the aircraft cabin is initiated, when, during descent of the aircraft, a differential pressure between the cabin pressure and the ambient pressure falls below a first calculated threshold value. The supply of ambient air into the aircraft cabin and an operation of an air outflow valve of a cabin pressurization system of the aircraft are controlled such that a flow of ambient air into the aircraft cabin corresponds to at least a predetermined minimum value and the differential pressure between the cabin pressure and the ambient pressure does not fall below a second calculated threshold value.
Abstract: A slip-reduction control unit for an aircraft having a steerable landing gear. The control unit receives steering input signals from which a target steering command output may be ascertained and additional input signals (a) the motion of the aircraft, (b) a steering angle, or (c) a parameter relating to the slip sustained by the steerable landing gear. The slip-reduction control unit determines, based on the additional input signals, reduces the rate of change of steering angle that would otherwise be commanded. The reduction in the rate of change may reduce vibration on the aircraft that might be caused by a greater rate of change in the steering angle.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
October 31, 2017
Assignees:
Airbus Operations Limited, Airbus Operations SAS
Abstract: An adapter for receiving a vehicle attendant seat in a cabin of a vehicle comprises a flat retaining body, a receiving device for a vehicle attendant seat, at least one first pivoting means and at least one first securing means. The at least one first pivoting means is arranged on a pivoting edge of the retaining body and is adapted for forming a hinge with at least one correspondingly formed second pivoting means. The receiving device is arranged on a surface of the at least one retaining body, which surface extends parallel to the plane, and is adapted for mechanically connecting the vehicle attendant seat with the at least one retaining body. Thus in a vehicle cabin a vehicle attendant seat may be accommodated in a very space-saving manner even at locations to which in conventional vehicle operation access is required.
Type:
Grant
Filed:
September 11, 2014
Date of Patent:
October 31, 2017
Assignee:
Airbus Operations GmbH
Inventors:
Ralf Schliwa, Maria Theresia Strasdas, Jan-Ole Jedraszczyk
Abstract: A passenger supply system installed in a passenger supply channel (PSC) on board a vehicle, such as an aircraft. The supply system comprises a rail track configured to be mounted along the PSC. The supply system further comprises an indiv panel mounted on the rail track and connectable to the PSC for supplying a passenger with conditioned air, medical outlet and/or oxygen. The indiv panel comprises a crossover area. The supply system further comprises a passenger supply unit mounted on the rail track and connectable to the PSC for supplying the passenger with light, visual information and/or sound information. The supply unit comprises an overlapping area. The supply unit and the indiv panel are configured such that in a mounted state of the supply unit and of the indiv panel the overlapping area of the supply unit at least partially overlaps with the crossover area of the indiv panel.
Abstract: An oxygen supply system includes a container housing having a container door, a latch controller coupled to a latch of the container door and configured to control the latch to releasably open the container door, a microcontroller coupled to the latch controller and configured to output a first latch deployment signal to the latch controller to cause the latch controller to open the latch, a pressure sensor coupled to the latch controller and configured to output a second latch deployment signal to the latch controller to cause the latch controller to open the latch, and an energy storage coupled to the microcontroller and the pressure sensor and configured to supply the microcontroller and the pressure sensor with electrical energy. The microcontroller includes built-in test equipment (BITE) configured to monitor and test the operability of one or more of the microcontroller, the latch controller, the pressure sensor and the energy storage.
Abstract: A side console for an aircraft cockpit includes a structure for mounting of an item of aircraft equipment and a complementary structure. The mounting structure and the complementary structure are formed of single-piece components articulated about an axis of articulation between a storage position in which the single-piece components are more or less folded against one another, and a position of installation in which the single-piece components extend respectively in substantially mutually perpendicular planes.
Type:
Application
Filed:
April 18, 2017
Publication date:
October 26, 2017
Applicant:
Airbus Operations S.A.S.
Inventors:
Bernard Guering, Matthieu De Kergommeaux
Abstract: The invention pertains to a connecting device for connecting a first structural component and a second structural component that can be moved relative to the first structural component in an articulated fashion such that three rotatory degrees of freedom are provided.
Abstract: A method and system for generating an alert report on board an aircraft, comprising an on-board acquiring module configured to acquire data relating to the aircraft, the data originating from sensors and/or equipment installed in the aircraft. An on-board processing module is configured to detect possible anomalies by automatically partitioning the data into a set of homogeneous groups, each anomaly being revealed by a corresponding datum belonging to no homogeneous group. An on-board alert-emitting module is configured to emit an alert report on each detection of an anomaly. An on-board transmitting module is configured to transmit the alert report to the ground and in real-time.
Abstract: The manufacture of structural elements for aircraft requires the use of complex and costly methods, particularly in the case of parts of elongate overall shape and variable thickness or cross section made of composite material. The disclosure herein proposes to overcome this problem by a method that allows the manufacture of a structural part from a preform made of composite material of simple shape obtained by pultrusion and of one or more reinforcing elements made of composite material and secured by cocuring with the preform to a region of this preform which region is to be reinforced.
Abstract: An aircraft landing gear including: a sprung arm mounted to a main pivot and carrying one or more wheels; leaf springs; a transfer arm attached to each of the leaf springs; and a swinging link with a first end which is pivotally coupled to the sprung arm via a first swinging link pivot and a second end which is pivotally coupled to the transfer arm via a second swinging link pivot. The leaf springs are arranged to provide a resilient biasing force via the transfer arm and the swinging link which opposes rotation of the sprung arm about the main pivot. Each leaf spring only absorbs a portion of the landing loads, so load and stress levels in each individual spring are lower. The swinging link enables the leaf springs to be positioned remotely from the sprung arm, in a suitable position to optimize the use of space and distribute loads efficiently into the airframe.
Abstract: A gas turbine engine for an aircraft includes a compressor, a combustion chamber, and a turbine having at least one stator, and at least one rotor. Each stator and rotor is formed by a plurality of blades, a fluid channel is formed between two consecutive blades, and each blade has two opposing surfaces. The compressor is in fluid communication with a first group of stator channels, and the combustion chamber is in fluid communication with a second group of stator channels, such that heat exchange can be performed through two opposing surfaces of at least one stator blade. The outer and the inner walls define a duct for the passage of the heated fluid through the rotor blades, and the outer wall is also arranged for directing the compressed air towards the combustion chamber.