Patents Assigned to Arkansas Power Electronics International, Inc.
  • Patent number: 9118289
    Abstract: A high temperature magnetic amplifier, which utilizes the nonlinear properties of square loop magnetic cores to achieve very large amounts of both voltage and power amplification. By combining square loop, grain-oriented magnetic materials with high temperatures along with high temperature packaging approaches, high temperature long lifetime components can be produced. The high temperature magnetic amplifier is used as a building block to develop high temperature versions of operational amplifiers, comparators, voltage regulators, timers, counters, modulators, motor starters, servo systems, converters, inverters, power switches and many other devices.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: August 25, 2015
    Assignee: Arkansas Power Electronics International, Inc.
    Inventor: John Fraley
  • Publication number: 20150216067
    Abstract: A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
    Type: Application
    Filed: January 30, 2015
    Publication date: July 30, 2015
    Applicant: Arkansas Power Electronics International, Inc.
    Inventors: Brice McPherson, Peter D. Killeen, Alex Lostetter, Robert Shaw, Brandon Passmore, Jared Hornberger, Tony M. Berry
  • Patent number: 9095054
    Abstract: A four quadrant power module with lower substrate parallel power paths and upper substrate equidistant clock tree timing utilizing parallel leg construction in a captive fastener power module housing.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 28, 2015
    Assignee: Arkansas Power Electronics International, Inc.
    Inventors: Jack Bourne, Jared Hornberger, Alex Lostetter, Brice McPherson, Ty McNutt, Brad Reese, Marcelo Schupbach, Robert Shaw, Eric Cole, Leonard Schaper
  • Patent number: 9071888
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (306) in connection with a turbine blade (301) or vane (22). A telemetry transmitter circuit (312) may be affixed to the turbine blade with an electrical connecting material (307) for routing electronic data signals from the sensor (306) to the telemetry transmitter circuit, the electronic data signals indicative of a condition of the turbine blade. A resonant energy transfer system for powering the telemetry transmitter circuit may include a rotating data antenna (314) affixed to the turbine blade or on a same substrate as that of the circuit. A stationary data antenna (320) may be affixed to a stationary component such as a stator (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 30, 2015
    Assignees: Siemens Aktiengesellschaft, ARKANSAS POWER ELECTRONICS INTERNATIONAL, INC
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, David J. Mitchell, Bjoern Karlsson, Rod Waits, John R. Fraley
  • Publication number: 20150131236
    Abstract: A power die module using a compression connection to a power die in a small package with corona extenders positioned around short efficient path exterior electrical connections. The module is built from a baseplate with connected sidewalls forming an interior compartment holding a power substrate with attached threaded inserts. A printed circuit board bolted to the power substrate with high voltage power die compressively held between the board and the substrate. The compressive hold enhances the electrical connections between the contacts on the top and bottom of the power die and either the power substrate or the printed circuit board. Exterior blade connectors extend upward from the printed circuit board through blade apertures in a lid that covers the interior compartment. The lid includes corona extenders positioned around the blade apertures to allow for high voltage applications while maintaining a small size lightweight package.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 14, 2015
    Applicant: Arkansas Power Electronics International, Inc.
    Inventors: Brandon Passmore, Zachary Cole, Brice McPherson
  • Patent number: 8952674
    Abstract: A voltage regulator circuitry (50) adapted to operate in a high-temperature environment of a turbine engine is provided. The voltage regulator may include a constant current source (52) including a first semiconductor switch (54) and a first resistor (56) connected between a gate terminal (G) and a source terminal (S) of the first semiconductor switch. A second resistor (58) is connected to the gate terminal of the first semiconductor switch (54) and to an electrical ground (64). The constant current source is coupled to generate a voltage reference across the second resistor 58. A source follower output stage 66 may include a second semiconductor switch (68) and a third resistor (58) connected between the electrical ground and a source terminal of the second semiconductor switch. The generated voltage reference is applied to a gating terminal of the second semiconductor switch (58).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 10, 2015
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Patent number: 8803703
    Abstract: A circuitry adapted to operate in a high-temperature environment of a turbine engine is provided. A relatively high-gain differential amplifier (102) may have an input terminal coupled to receive a voltage indicative of a sensed parameter of a component (20) of the turbine engine. A hybrid load circuitry may be coupled to the differential amplifier. A voltage regulator circuitry (244) may be coupled to power the differential amplifier. The differential amplifier, the hybrid load circuitry and the voltage regulator circuitry may each be disposed in the high-temperature environment of the turbine engine.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: August 12, 2014
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Patent number: 8629783
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 14, 2014
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20130221514
    Abstract: Provided is a double-sided cooling structure for a semiconductor device using a low processing temperature and reduced processing time utilizing solid phase diffusion bonding. The fabrication method for this system is provided. The semiconductor device 1 comprising: a mounting substrate 70; a semiconductor chip 10 disposed on the mounting substrate 70 and a semiconductor substrate 26, a source pad electrode SP and a gate pad electrode GP disposed on a surface of the semiconductor substrate 26, and a drain pad electrode 36 disposed on a back side surface of the semiconductor substrate 26 to be contacted with the mounting substrate 70; and a source connector SC disposed on the source pad electrode SP. The mounting substrate 70 and the drain pad electrode 36 are bonded by using solid phase diffusion bonding.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicants: ROHM CO., LTD., ARKANSAS POWER ELECTRONICS INTERNATIONAL, INC.
    Inventors: Takukazu OTSUKA, Bryon WESTERN, Brandon PASSMORE, Zach COLE
  • Patent number: 8427120
    Abstract: The present invention is directed to a coupled inductor output filter to be used with DC/DC switched mode power supply topologies. This new output filter changes the inherent power sharing capability of most DC/DC converter topologies, enabling the overall converter to operate as a truly modular block with no inter-module communication required to accomplish power/current sharing on a multi-module configuration. The coupled-inductor output filter uses a split inductor, Lout1 and Lout2, a main output capacitor, Cout, and a DC blocking capacitor, CDC Block.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 23, 2013
    Assignee: Arkansas Power Electronics International, Inc.
    Inventor: Edgar Cilio
  • Patent number: 8410600
    Abstract: Provided are a semiconductor device and a method of fabricating the semiconductor device, the semiconductor device including: a source trace, a drain trace, and a gate trace placed on a substrate; a transistor which is placed on the drain trace and includes a source pad and a gate pad; insulating films placed between the drain and source traces and between the drain and gate traces on the substrate so as to cover sidewall surfaces of the transistor; a source spray electrode which is placed on the insulating film between the source and drain traces and connects the source pad of the transistor and the source trace; and a gate spray electrode placed on the insulating film between the gate and drain traces and connects the gate pad of the transistor and the gate trace.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 2, 2013
    Assignees: Arkansas Power Electronics International, Inc., Rohm Co., Ltd.
    Inventors: Alexander B. Lostetter, Jared Hornberger, Takukazu Otsuka
  • Patent number: 8228114
    Abstract: A direct drive cascode using a gate signal driven D-mode JFET connected in series with a power-enable-signal driven E-Mode JFET to provide a quick-operation high-temperature normally-off cascode configuration with low noise characteristics. The E-mode JFET may have the E-mode gate connected to ground with a pull down power element or resistor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 24, 2012
    Assignee: Arkansas Power Electronics International, Inc.
    Inventor: Edgar Cilio
  • Patent number: 8220990
    Abstract: A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8223036
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8023269
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: September 20, 2011
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 7965522
    Abstract: High temperature gate driving circuits with improved noise resistance and minimized loss are implemented with high temperature components with a reduced size magnetic isolation transformer. Input broad-pulse width modulated signals are converted to offsetting narrow pulses to cross the reduced size magnetic transformer minimizing isolation losses. One embodiment teaches time and voltage offset narrow single pulses that control a set and reset regeneration of the pulse width output on the secondary side of the transformer. Another embodiment teaches multiple concurrent voltage offset pulses to cross the transformer and charge a threshold capacitor for both filtering noise and controlling the pulse width regeneration on the secondary side of the transformer.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 21, 2011
    Assignee: Arkansas Power Electronics International, Inc.
    Inventors: Jared Hornberger, Brad Reese, Edgar Cilio, Roberto Marcelo Schupbach, Alex Lostetter, Sharmila Mounce
  • Publication number: 20110079792
    Abstract: Provided are a semiconductor device and a method of fabricating the semiconductor device, the semiconductor device including: a source trace, a drain trace, and a gate trace placed on a substrate; a transistor which is placed on the drain trace and includes a source pad and a gate pad; insulating films placed between the drain and source traces and between the drain and gate traces on the substrate so as to cover sidewall surfaces of the transistor; a source spray electrode which is placed on the insulating film between the source and drain traces and connects the source pad of the transistor and the source trace; and a gate spray electrode placed on the insulating film between the gate and drain traces and connects the gate pad of the transistor and the gate trace.
    Type: Application
    Filed: September 7, 2010
    Publication date: April 7, 2011
    Applicants: ARKANSAS POWER ELECTRONICS INTERNATIONAL, INC., ROHM CO., LTD.
    Inventors: Alexander B. Lostetter, Jared Hornberger, Takukazu Otsuka
  • Publication number: 20100039288
    Abstract: A circuit affixed to a moving part of an engine for sensing and processing the temperature of the part. The circuit generates a signal representative of the temperature sensed by a thermocouple (110) and amplified by an amplifier (112). A square wave oscillator (113) with a temperature sensitive capacitor (C8) varies its frequency in response to changes of a local temperature of the circuit. A chopper (114, J27) converts the output of the amplifier into an alternating current signal. The chopper is gated by the square wave oscillator and a second input is coupled to an output of the amplifier. Thus, the chopper has an output signal having a frequency representative of the local temperature and an amplitude representative of the thermocouple temperature, whereby the combined signals represent the true temperature of the part.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN
  • Publication number: 20100039290
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN
  • Publication number: 20100039779
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN