Patents Assigned to ASAHI FR R&D CO., LTD.
  • Publication number: 20200411215
    Abstract: An extensible electroconductive wiring material includes a flexible electroconductive material and insulating elastic bodies and, wherein the flexible electroconductive material having an electroconductive layer has vent peripheral edge portions in which vent holes and/or vent slits are penetrated and aligned in series and/or in parallel along an energization direction of the electroconductive layer while the vent peripheral edge portions are energizably linked, and the vent peripheral edge portions is sealed and covered by the insulating elastic bodies, so as not to be exposed; and the insulating elastic bodies, have penetration slits, and/or penetration holes which penetrate therethrough while matching the vent peripheral edge portions and are smaller than the vent holes and the vent slits. The extensible electroconductive wiring module has a plurality of these extensible electroconductive wiring materials.
    Type: Application
    Filed: December 14, 2018
    Publication date: December 31, 2020
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Shinji TAKEOKA, Toshinori FUJIE, Kento YAMAGISHI, Hiroshi TAKAMI, Masaru AZUMA, Syo MIHARA
  • Publication number: 20200388740
    Abstract: A thermoelectric conversion device includes: a thermoelectric module layer, in which a thermoelectric conversion chip is surrounded by a thermal insulation rubber containing a rubber component and a hollow filler forming a plurality of air gaps that are independent from one another; an insulation base layer and an insulation intermediate layer, which are thermal-conductive insulation sheets and sandwiches the thermoelectric module layer; a heat diffusion layer, which has a higher thermal conductance than those of the insulation base layer and the insulation intermediate layer and is stacked on the insulation intermediate layer; and a thermal radiation layer, which has thermal conductivity and is stacked on the heat diffusion layer. And at least one pair among the adjacent layers is bonded through chemical bonds.
    Type: Application
    Filed: November 13, 2017
    Publication date: December 10, 2020
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Syuhei TOYOSHIMA, Syo MIHARA, Koichi ABE
  • Patent number: 10636952
    Abstract: A flexible Peltier device in which emitting heat conversion properties between Peltier elements and an object transferring heat may be improved and a flexible heat-emitting sheet having the Peltier elements bonded thereto may be bent without worrying the separation there between. A flexible Peltier device includes a single or plural Peltier element which is disposed on one surface side of a heat-emitting sheet having flexibility made from heat-conductive rubber containing a heat conductive filler and each semiconductor element which has a heating side and a cooling side and composes the Peltier element at least one of the heating side and the cooling side is bonded integrally to the heat-emitting sheet by a direct covalent bond and/or by an indirect covalent bond through a molecular adhesive at active groups existing on each other surfaces.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: April 28, 2020
    Assignee: ASAHI FR R&D CO., LTD.
    Inventors: Kazuhisa Takagi, Koichi Abe, Nobuyoshi Watanabe, Syuhei Toyoshima
  • Patent number: 10100949
    Abstract: A check-valve comprises: a thin sheet and a thick sheet; flow paths for flowing fluid which are formed by penetrating the thin sheet and the thick sheet; a flow-in chamber and a flow-out chamber which are connected to the flow paths; a partition sheet which is bonded to the thin sheet and the thick sheet while being sandwiched therebetween, and has a flexible inner flange which projects in cavities of the flow-in chamber and the flow-out chamber and does not close the flow-out valve chamber by flexing toward the flow-out valve chamber in a normal flow, and closes the flow-in valve chamber by flexing toward the flow-in valve chamber in a reverse flow; and a through-pass hole which is opened at the partition sheet and connects the both valve chambers.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: October 16, 2018
    Assignee: ASAHI FR R&D CO., LTD.
    Inventor: Tsutomu Takano
  • Publication number: 20180066769
    Abstract: A check-valve comprises: a thin sheet and a thick sheet; flow paths for flowing fluid which are formed by penetrating the thin sheet and the thick sheet; a flow-in chamber and a flow-out chamber which are connected to the flow paths; a partition sheet which is bonded to the thin sheet and the thick sheet while being sandwiched therebetween, and has a flexible inner flange which projects in cavities of the flow-in chamber and the flow-out chamber and does not close the flow-out valve chamber by flexing toward the flow-out valve chamber in a normal flow, and closes the flow-in valve chamber by flexing toward the flow-in valve chamber in a reverse flow; and a through-pass hole which is opened at the partition sheet and connects the both valve chambers.
    Type: Application
    Filed: April 27, 2016
    Publication date: March 8, 2018
    Applicant: ASAHI FR R&D CO., LTD.
    Inventor: Tsutomu TAKANO
  • Publication number: 20170352794
    Abstract: A flexible Peltier device in which emitting heat conversion properties between Peltier elements and an object transferring heat may be improved and a flexible heat-emitting sheet having the Peltier elements bonded thereto may be bent without worrying the separation there between. A flexible Peltier device includes a single or plural Peltier element which is disposed on one surface side of a heat-emitting sheet having flexibility made from heat-conductive rubber containing a heat conductive filler and each semiconductor element which has a heating side and a cooling side and composes the Peltier element at least one of the heating side and the cooling side is bonded integrally to the heat-emitting sheet by a direct covalent bond and/or by an indirect covalent bond through a molecular adhesive at active groups existing on each other surfaces.
    Type: Application
    Filed: January 8, 2016
    Publication date: December 7, 2017
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Kazuhisa TAKAGI, Koichi ABE, Nobuyoshi WATANABE, Syuhei TOYOSHIMA
  • Publication number: 20160325278
    Abstract: A three-dimensional microchemical chip having flow-path-supporting substrate sheets flow-path-retaining substrate sheets which is stacked to the flow-path-supporting substrate sheets and join and integrate therewith by a direct covalent bond or an indirect covalent bond via molecular adhesive, flow paths defined by recessing and/or piercing the flow-path-supporting substrate sheets and sterically and sequentially, in which a fluid sample is subjected to a chemical reaction and/or chemical action, a receiving hole which is pierced in the flow-path-retaining substrate sheet and is connected to the flow paths; the flow paths are sequentially and sterically connected from fluid-sample-injecting holes to fluid-sample-draining holes.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 10, 2016
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Kazuhisa TAKAGI, Tsutomu TAKANO, Yuya UBUKATA
  • Publication number: 20160184789
    Abstract: A simple and compact microchemical chip has a fine flow path formed therein through which a specimen is made to flow; is break resistance; makes it possible to flow the fluid sample to the flow path; makes it possible to analyze a useful substance and cause it to react; and can be produced with a high yield. A microchemical chip includes: a rubber sheet having a penetrated flow path which chemically reacts a pressurized fluid sample selected from a specimen and a reagent by flowing thereinto; substrate sheets which sandwich the rubber sheet and bond to both faces thereof by direct bond or by chemical bond through a silane-coupling agent and are selected from metal, ceramics, glass, and resin; and a hole for injecting the fluid sample into the flow path and a hole for draining the fluid sample flowed therefrom which are opened into the substrate sheet.
    Type: Application
    Filed: August 23, 2013
    Publication date: June 30, 2016
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Kazuhisa TAKAGI, Tsutomu TAKANO