Abstract: The present invention provides a glass substrate for flat panel display in which yellowing occurring in a case of forming silver electrodes on glass substrate surface is inhibited. A glass substrate for flat panel display, which is formed by a float method, which has a composition consisting essentially of, in terms of oxide amount in mass %: SiO2 50 to 72%, Al2O3 0.15 to 15%, MgO + CaO + SrO + BaO 4 to 30%, Na2O more than 0% and at most 10%, K2O 1 to 21%, Li2O 0 to 1%, Na2O + K2O + Li2O 6 to 25%, ZrO2 0 to 10%, and Fe2O3 0.0725 to 0.15%; and wherein the average Fe2+ content in a surface layer of the glass substrate within a depth of 10 ?m from the top surface is at most 0.0725% in terms of Fe2O3 amount.
Abstract: An imaging lens is provided, whose lens characteristics can be switched between e.g. normal imaging and close-up imaging without requiring mechanically movable mechanism or attachment/removal of another lens. Switching of lens function is realized by combining a liquid crystal diffraction lens and a refractive lens and applying a voltage to a liquid crystal layer of the liquid crystal lens. The liquid crystal lens is constituted by two liquid crystal lenses that are laminated together so that their polarization directions producing lens functions are perpendicular to each other, which suppresses chromatic aberration and achieves good imaging characteristics by appropriately selecting focal lengths and Abbe numbers.
Abstract: The present invention provides a frit containing substantially no lead, which is applicable to a member having ? of at most 50×10<7/° C. A frit comprising a low-melting point glass powder and a refractory filler powder, containing substantially no lead, having a thermal expansion coefficient of at most 50×10?7/° C., and being processable at 500° C. or lower, wherein the above low-melting point glass powder satisfies a softening pour point range of at least 30° C.
Abstract: To provide a membrane/electrode assembly for polymer electrolyte fuel cells, which is capable of providing high power generation performance even under a low humidity condition and has sufficient mechanical strength and dimensional stability, and which has an excellent durability even in an environment where moistening and drying are repeated, and a polymer electrolyte fuel cell which is capable of providing high power generation performance even under a low humidity condition. A membrane/electrode assembly 10 is used, which comprises a cathode 20 having a catalyst layer 22, an anode 30 having a catalyst layer 32, and a polymer electrolyte membrane 40 interposed between the catalyst layer 22 of the cathode 20 and the catalyst layer 32 of the anode 30, wherein at least one of the cathode 20 and the anode 30 further has a reinforcing layer 26 comprising a porous sheet-form reinforcing material made of a polymer, and an electrically conductive fiber.
Abstract: A high frequency wave glass antenna for an automobile includes an antenna conductor formed in a loop shape and disposed in or an automobile window glass sheet, the antenna conductor having a discontinuity and feeding portions at both ends of the discontinuity or in the vicinity of said both ends, the discontinuity being formed of a portion of the loop shape cut by a length. The antenna conductor includes a detour in a portion of the loop shape, the detour being formed of a single or a plurality of detour elements, the detour being disposed in a position, which satisfies that a rate of a distance from a center of the discontinuity of the original loop shape to a center of the detour of the original loop shape with respect to a length of an inner peripheral edge or an outer peripheral edge of the original loop shape ranges from 0.18 to 0.4.
Type:
Application
Filed:
March 30, 2009
Publication date:
October 1, 2009
Applicant:
ASAHI GLASS COMPANY, LIMITED
Inventors:
Osamu Kagaya, Kotaro Suenaga, Koji Ikawa
Abstract: A glass-coated light-emitting element 10 of the invention has a semiconductor light-emitting element 2 having a surface on which no electrode is formed is coated with a glass 1, in which a surface of the glass 1 constitutes a part of a spherical surface broader than a hemispherical surface, the refractive index of the glass 1 at an emission peak wavelength of the semiconductor light-emitting element 2 is 1.7 or more, and the ratio of the diameter of the above-mentioned spherical surface to the maximum diameter of a surface of the semiconductor light-emitting element 2 on which electrodes are formed is 1.8 to 3.5, whereby light emitted from the light-emitting element can be efficiently introduced into a light control unit, and alignment with a lens or a light pipe, which has hitherto been made, becomes unnecessary.
Abstract: An antifogging glass is provided which has not only an excellent antifogging property but also an excellent appearance and provides an excellent visual effect to an observer. An antifogging glass for a vehicle window, comprising a glass sheet for a vehicle window and an antifogging film disposed on an interior side of the glass sheet, the glass sheet having a dark concealment region disposed in a band-shape on a peripheral edge portion thereof, and the antifogging film having an edge present in a position closer to a central portion of the glass sheet than an edge of the glass sheet and in the dark concealment region.
Abstract: In the production of a glass substrate for magnetic disks, in a step of polishing a main surface of a circular glass plate, roll-off is reduced without reducing the polishing rate. The process comprises a step of polishing a main surface of a circular glass plate by using an acidic polishing fluid containing colloidal silica or fumed silica, and a water-soluble polymer having at least one member selected from a group consisting of a carboxylic acid group, a carboxylate group, a sulfonic acid group and a sulfonate group, bonded to its main chain, or an acidic polishing fluid containing 100 parts by mass of colloidal silica or fumed silica, and from 0.02 to 0.1 part by mass of a surfactant having a sulfonic acid group.
Type:
Application
Filed:
June 3, 2009
Publication date:
September 24, 2009
Applicant:
ASAHI GLASS COMPANY LIMITED
Inventors:
Mizuho ISHIDA, Kara Yoshida, Hiroshi Usui
Abstract: To provide a process for producing a flexible polyurethane foam, which can suitably form a flexible polyurethane foam having a good cushioning characteristic by using a raw material derived from a natural fat/oil. The process comprises a step of reacting a polyoxyalkylene polyol (A) containing the first polyoxyalkylene polyol (A1) obtained by ring-opening polymerization of an alkylene oxide (c) with an initiator (b) in the presence of a polymerization catalyst (a), with a polyisocyanate compound (B) in the presence of a catalyst (C) and a blowing agent (D).
Abstract: To provide an electrolyte membrane having excellent dimensional stability even upon absorption of water, a high proton conductance and high power generation performance; and a process for producing the electrolyte membrane with a high productivity. An electrolyte membrane for polymer electrolyte fuel cells, which is made mainly of an ion exchange resin and reinforced with a nonwoven fabric made of fiber of a fluororesin wherein at least some of intersecting points of the fiber are fixed, and which has, as the outermost layer on one side or each side, a layer not reinforced, made of an ion exchange resin which may be the same as or different from the above ion exchange resin, wherein the fluororesin is an ethylene/tetrafluoroethylene copolymer having a melting point of at most 240° C., and the above fixing is fixing by fusion of the fiber.
Abstract: To provide an aqueous coating composition which has a low content of an organic solvent, whereby a burden on an environment is small; in which an increase of the molecular weight, gelation, etc. are suppressed; which performs excellent storage stability and provides a coating film having good water permeability/water resistance. An aqueous coating composition which is a composition obtained by dispersing a fluorocopolymer (A) obtained by a solution polymerization method, in an aqueous medium, and which comprises a repeating unit (1) of fluoroolefin, a repeating unit (2) of a vinyl monomer or an allyl monomer, a repeating unit (3) of a vinyl monomer having a hydroxyl group bonded thereto or of an allyl monomer having a hydroxyl group bonded thereto, and a unit (4) of a vinyl monomer having a carboxylate group bonded thereto or of an allyl monomer, and which comprises a fluorocopolymer (A) wherein a proportion of the repeating unit (4) is from 0.
Abstract: To provide glass for a data storage medium substrate, whereby high heat resistance can be obtained. Glass for a data storage medium substrate, which comprises, as represented by mol percentage based on the following oxides, from 55 to 70% of SiO2, from 2.5 to 9% of Al2O3, from 0 to 10% of MgO, from 0 to 7% of CaO, from 0.5 to 10% of SrO, from 0 to 12.5% of BaO, from 0 to 2.5% of TiO2, from 0.5 to 3.7% of ZrO2, from 0 to 2.5% of Li2O, from 0 to 8% of Na2O, from 2 to 8% of K2O and from 0.5 to 5% of La2O3, provided that the total content of Al2O3 and ZrO2 (Al2O3+ZrO2) is at most 12%, and the total content of Li2O, Na2O and K2O (R2O) is at most 12%.
Abstract: A glass melting apparatus is provided with a clarifier tank adapted to clarify melted glass which is obtained by melting a raw glass material. Partition walls are provided in the clarifier tank so as to define a meandering flow passage through which the melted glass flows. A bottom of the clarifier tank is sloped so that the flow passage ascends from an upstream side thereof to a downstream side thereof.
Abstract: To provide a substrate glass for data storage medium which is excellent in weather resistance even when no additional treatment such as chemical reinforcement treatment is applied and less susceptible to a whitening phenomenon and which has a glass transition temperature of at least 680° C. and is excellent in acid resistance. A substrate glass for data storage medium, which comprises, as represented by mass %, from 47 to 60% of SiO2, from 8 to 20% of Al2O3, from 0 to 8% of MgO, from 0 to 6% of CaO, from 1 to 18% of SrO, from 0 to 13% of BaO, from 1 to 6% of TiO2, from 1 to 5% of ZrO2, from 2 to 8% of Na2O and from 1 to 15% of K2O and which has a glass transition temperature of at least 680° C.
Abstract: For a substrate having fine convexoconcave patterns on its surface, the dimensions of the convexoconcave patterns in a vertical direction of a quartz glass substrate are controlled to be uniform with extreme accuracy and over the entire substrate surface. The quartz glass substrate is made to have a fictive temperature distribution of at most 40° C. and a halogen concentration of less than 400 ppm, and the etching rate of the surface of the quartz glass substrate is made uniform, whereby the dimensions of the convexoconcave patterns in a vertical direction of the quartz glass substrate are controlled to be uniform with good accuracy and over the entire substrate surface.
Abstract: The invention is to provide a method in which waviness generated on a glass substrate surface during pre-polishing is removed, thereby finishing the glass substrate so as to have a surface excellent in flatness.
Abstract: To provide a method for producing a rigid polyurethane foam, whereby it is possible to reduce the density without causing deterioration in dimensional stability, and a rigid polyurethane foam. A method for producing a rigid polyurethane foam, which comprises a step of reacting a polyol having a hydroxyl value of from 200 to 800 mgKOH/g with a polyisocyanate compound in the presence of an amino-modified silicone, a catalyst, a blowing agent and a surfactant.
Abstract: The present invention relates to a method and an apparatus for bending a glass sheet, and has an object of achieving high forming accuracy of a glass sheet along a perpendicular direction perpendicular to a conveying direction of the glass sheet, in particular, to obtain high forming accuracy both along the conveying direction and the perpendicular direction.
Type:
Application
Filed:
March 10, 2009
Publication date:
September 17, 2009
Applicant:
ASAHI GLASS COMPANY, LIMITED
Inventors:
Ken NOMURA, Nozomi OTSUBO, Hideki MURAMATSU, Toshimitsu SATO
Abstract: The present invention has an object to provide an optical glass having excellent devitrification properties during high temperature forming and press moldability and capable of reducing weight and size of an optical system. The present invention relates to an optical glass comprising, in mass % on oxide basis; B2O3: 10 to 25%, SiO2: 0.5 to 12%, La2O3: 17 to 38%, Gd2O3: 5 to 25%, ZnO: 8 to 20%, Li2O: 0.5 to 3%, Ta2O5: 5 to 15% and WO3: 3 to 15, wherein (SiO2+B2O3)/(ZnO+Li2O) value which is a mass ratio of the total content of SiO2 and B2O3 to the total content of ZnO and Li2O is from 1.35 to 1.90.
Abstract: To provide a flexible polyurethane foam having improved sound absorbing properties in a low frequency region. A process for producing a flexible polyurethane foam which comprises foaming a starting material composition (E) comprising a high molecular weight polyoxyalkylene polyol (A), an organic polyisocyanate compound (B), a blowing agent (C) and a catalyst (D) in a closed mold, characterized in that at least a part of the high molecular weight polyoxyalkylene polyol (A) is a polyoxyalkylene polyol (p) having at least two hydroxyl groups on the average and having a molecular weight (Mc) per hydroxyl group of from 1,800 to 2,800 and a total unsaturation value (USV) of at most 0.08 meq/g, and that the air flowability of a flexible polyurethane foam obtained by foaming the starting material composition (E) in a thickness of 26 mm, is at most 0.085 m3/min.