Patents Assigned to ASM Microchemistry Oy
  • Patent number: 6881263
    Abstract: The present invention relates to the production of thin films. In particular, the invention concerns a method of growing a thin film onto a substrate, in which method the substrate is placed in a reaction chamber and is subjected to surface reactions of a plurality of vapor-phase reactants according to the ALD method. The present invention is based on replacing the mechanical valves conventionally used for regulating the pulsing of the reactants, which valves tend to wear and intrude metallic particles into the process flow, with an improved precursor dosing system. The invention is characterized by choking the reactant flow between the vapour-phase pulses while still allowing a minimum flow of said reactant, and redirecting the reactant at these times to an other destination than the reaction chamber. The redirection is performed with an inactive gas, which is also used for ventilating the reaction chamber between the vapour-phase pulses.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: April 19, 2005
    Assignee: ASM Microchemistry Oy
    Inventors: Sven Lindfors, Pekka T. Soininen
  • Patent number: 6777353
    Abstract: This invention concerns a process for producing oxide thin film on a substrate by an ALD type process. According to the process, alternating vapour-phase pulses of at least one metal source material, and at least one oxygen source material are fed into a reaction space and contacted with the substrate. According to the invention, an yttrium source material and a zirconium source material are alternately used as the metal source material so as to form an yttrium-stabilised zirconium oxide (YSZ) thin film on a substrate.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: August 17, 2004
    Assignee: ASM Microchemistry Oy
    Inventor: Matti Putkonen
  • Patent number: 6759325
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits, and particularly of openings formed in porous materials. Trenches and contact vias are formed in insulating layers. The pores on the sidewalls of the trenches and vias are blocked, and then the structure is exposed to alternating chemistries to form monolayers of a desired lining material. In exemplary process flows chemical or physical vapor deposition (CVD or PVD) of a sealing layer blocks the pores due to imperfect conformality. An alternating process can also be arranged by selection of pulse separation and/or pulse duration to achieve reduced conformality relative to a self-saturating, self-limiting atomic layer deposition (ALD) process. In still another arrangement, layers with anisotropic pore structures can be sealed by selectively melting upper surfaces. Blocking is followed by a self-limiting, self-saturating atomic layer deposition (ALD) reactions without significantly filling the pores.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: July 6, 2004
    Assignee: ASM Microchemistry Oy
    Inventors: Ivo Raaijmakers, Pekka T. Soininen, Ernst Granneman, Suvi Haukka, Kai-Erik Elers, Marko Tuominen, Hessel Sprey, Herbert Terhorst, Menso Hendriks
  • Patent number: 6699524
    Abstract: The present invention concerns a method and an apparatus for feeding a gas phase reactant from a reactant source into a gas phase reaction chamber. In the method a reactant which is a liquid or solid at ambient temperature is vaporized from the reactant source at a vaporizing temperature; and the vaporized reactant is fed into the reaction chamber. According to the invention the reactant source and the reaction chamber are located in separate vessels which can be individually evacuated. By means of the invention it becomes possible to change and load new reactant chemical without breaking the vacuum of the reaction chamber.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: March 2, 2004
    Assignee: ASM Microchemistry OY
    Inventor: Janne Kesälä
  • Patent number: 6689210
    Abstract: The invention relates to an apparatus for growing thin films onto the surface of a substrate by exposing the substrate to alternately repeated surface reactions of vapor-phase reactants. The apparatus comprises at least one process chamber having a tightly sealable structure, at least one reaction chamber having a structure suitable for adapting into the interior of said process chamber and comprising a reaction space of which at least a portion is movable, infeed means connectable to said reaction space for feeding said reactants into said reaction space, and outfeed means connectable to said reaction space for discharging excess reactants and reaction gases from said reaction space, and at least one substrate adapted into said reaction space.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: February 10, 2004
    Assignee: ASM Microchemistry Oy
    Inventors: Pekka T. Soininen, Vaino Kilpi
  • Patent number: 6632279
    Abstract: A method is provided for growing thin oxide films on the surface of a substrate by alternatively reacting the surface of the substrate with a metal source material and an oxygen source material. The oxygen source material is preferably a metal alkoxide. The metal source material may be a metal halide, hydride, alkoxide, alkyl, a cyclopentadienyl compound, or a diketonate.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: October 14, 2003
    Assignee: ASM Microchemistry, Oy
    Inventors: Mikko Ritala, Antti Rahtu, Markku Leskela, Kaupo Kukli
  • Publication number: 20030188682
    Abstract: Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
    Type: Application
    Filed: August 27, 2002
    Publication date: October 9, 2003
    Applicant: ASM Microchemistry OY
    Inventors: Eva Tois , Suvi Haukka , Marko Tuominen
  • Patent number: 6599572
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 29, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6579374
    Abstract: The invention relates to an apparatus for growing thin films onto a substrate by exposing the substrate to alternate surface reactions of vapor-phase reactants for forming a thin film onto the substrate by means of said surface reactions. The apparatus comprises a vacuum vessel (1), a reaction chamber (2) with a reaction space into which the substrate can be transferred and which has infeed channels (6) for feeding therein the reactants used in said thin film growth process, as well as outlet channels (4) for discharging gaseous reaction products and excess reactants. According to the invention, said reaction chamber comprises a base part (9, 10) mounted stationary in respect to the interior of said vacuum vessel (1) and a movable part (18) adapted to be sealably closable against said base part of said reaction chamber. The invention makes it possible to improve the cleanliness of the substrate load chamber and to reduce the degree of substrate contamination.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: June 17, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Niklas Bondestam, Janne Kesälä, Leif Keto, Pekka T. Soininen
  • Patent number: 6562140
    Abstract: The invention relates to an apparatus for growing thin films onto a substrate by exposing the substrate to alternate surface reactions of vapor-phase reactants for forming a thin film onto the substrate by means of said surface reactions. The apparatus comprises a vacuum vessel (1), a reaction chamber (2) with a reaction space into which the substrate can be transferred and which has infeed channels (6) for feeding therein the reactants used in said thin film growth process, as well as outlet channels (4) for discharging gaseous reaction products and excess reactants. According to the invention, said reaction chamber comprises a base part (9, 10) mounted stationary in respect to the interior of said vacuum vessel (1) and a movable part (18) adapted to be sealably closable against said base part of said reaction chamber. The invention makes it possible to improve the cleanliness of the substrate load chamber and to reduce the degree of substrate contamination.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: May 13, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Niklas Bondestam, Janne Kesälä, Leif Keto, Pekka T. Soininen
  • Patent number: 6551406
    Abstract: An apparatus for growing thin films by exposing the substrate to alternately repeated surface reactions of vapor-phase reactants. The apparatus comprises a reaction chamber including a reaction space, infeed means connected to the reaction space for feeding into the reaction space the reactants, and outfeed means connected to the reaction space for discharging waste gases. At least one substrate is adapted into the reaction space and a second surface is also adapted into the reaction space in a disposition opposed to the surface of the substrate. The thin-film growth supporting surface of the substrate and the other surface disposed opposing the same are arranged in the reaction chamber so as to subtend an angle opening in the flow direction of the reactants in relation to the opposed surfaces. The distance between the opposed surfaces at the infeed end of reactants is smaller than at the gas outfeed end.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: April 22, 2003
    Assignee: ASM Microchemistry Oy
    Inventor: Vaino Kilpi
  • Patent number: 6548424
    Abstract: This invention concerns a process for producing oxide thin film on a substrate by an ALD type process. According to the process, alternating vapor-phase pulses of at least one metal source material, and at least one oxygen source material are fed into a reaction space and contacted with the substrate. According to the invention, an yttrium source material and a zirconium source material are alternately used as the metal source material so as to form an yttrium-stabilized zirconium oxide (YSZ) thin film on a substrate.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: April 15, 2003
    Assignee: ASM Microchemistry Oy
    Inventor: Matti Putkonen
  • Patent number: 6534395
    Abstract: Thin films are formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO2) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 18, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Christiaan J. Werkhoven, Ivo Raaijmakers, Suvi P. Haukka
  • Patent number: 6506352
    Abstract: The present invention concerns a method and an apparatus for removing substances from gases discharged from gas phase reactors. In particular, the invention provides a method for removing substances contained in gases discharged from an ALD reaction process, comprising contacting the gases with a “sacrificial” material having a high surface area kept at essentially the same conditions as those prevailing during the gas phase reaction process. The sacrificial material is thus subjected to surface reactions with the substances contained in the gases to form a reaction product on the surface of the sacrificial material and to remove the substances from the gases. The present invention diminishes the amount of waste produced in the gas phase process and reduces wear on the equipment.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: January 14, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Sven Lindfors, Jaakko Hyvarinen
  • Patent number: 6492283
    Abstract: A method is disclosed for forming an ultrathin oxide layer of uniform thickness. The method is particularly advantageous for producing uniformly thin interfacial oxides beneath materials of high dielectric permittivity, or uniformly thin passivation oxides. Hydrofluoric (HF) etching of a silicon surface, for example, is followed by termination of the silicon surface with ligands larger than H or F, particularly hydroxyl, alkoxy or carboxylic tails. The substrate is oxidized with the surface termination in place. The surface termination and relatively low temperatures moderate the rate of oxidation, such that a controllable thickness of oxide is formed. In some embodiments, the ligand termination is replaced with OH prior to further deposition. The deposition preferably includes alternating, self-limiting chemistries in an atomic layer deposition process, though any other suitable deposition process can be used.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: December 10, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Ivo Raaijmakers, Yong-Bae Kim, Marko Tuominen, Suvi P. Haukka
  • Patent number: 6482262
    Abstract: The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 19, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6482733
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits, and particularly of openings formed in porous materials. Trenches and contact vias are formed in insulating layers. The pores on the sidewalls of the trenches and vias are blocked, and then the structure is exposed to alternating chemistries to form monolayers of a desired lining material. In exemplary process flows chemical or physical vapor deposition (CVD or PVD) of a sealing layer blocks the pores due to imperfect conformality, and is followed by an atomic layer deposition (ALD), particularly alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. An alternating process can also be arranged to function in CVD-mode within pores of the insulator, since the reactants do not easily purge from the pores between pulses. Self-terminated metal layers are thus reacted with nitrogen.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: November 19, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Ivo Raaijmakers, Pekka T. Soininen, Ernst H. A. Granneman, Suvi P. Haukka
  • Patent number: 6482740
    Abstract: This invention relates to manufacturing of integrated circuits (ICs) and especially conductive layers suitable for use in an IC. According to the preferred method a metal oxide thin film is deposited on a substrate surface and reduced thereafter essentially into a metallic form with an organic reducing agent. The metal oxide is preferably deposited according to the principles of atomic layer deposition (ALD) using a metal source chemical and an oxygen source chemical. The reduction step is preferably carried out in an ALD reactor using one or more vaporized organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO and —COOH.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: November 19, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Patent number: 6475276
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 5, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Kai-Erik Elers, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6447607
    Abstract: The invention relates to an apparatus for growing thin films onto the surface of a substrate by exposing the substrate to alternately repeated surface reactions of vapor-phase reactants. The apparatus comprises at least one process chamber having a tightly sealable structure, at least one reaction chamber having a structure suitable for adapting into the interior of said process chamber and comprising a reaction space of which at least a portion is movable, infeed means connectable to said reaction space for feeding said reactants into said reaction space, and outfeed means connectable to said reaction space for discharging excess reactants and reaction gases from said reaction space, and at least one substrate adapted into said reaction space.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: September 10, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Pekka T. Soininen, Vaino Kilpi