Patents Assigned to Basell Polyolefin GmbH
  • Publication number: 20130072652
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 21, 2013
    Applicant: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 8394907
    Abstract: A polypropylene resin comprising a propylene polymer having the following features: a) melt flow rate (MFR) (ISO 1133) (230° C./2.16 kg) comprised between 120 g/10? and 400 g/10?; b) distribution of molecular weight Mw/Mn lower than 4; c) haze measured according to ASTM D 1003 comprised between 5% and 30%; and d) flexural modulus measured according ISO 178 after 48 h comprised between 1750 N/m2 and 2300 N/m2.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 12, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Alexander Fuchs, Bernd Schuetz
  • Publication number: 20120283400
    Abstract: The present invention refers to a process for the preparation of supported catalysts for the polymerization of olefins comprising at least a late transition metal complex, wherein the process comprises two steps. In the first step a catalytically active component comprising at least one late transition metal complex, optionally in the presence of one or more cocatalysts is mixed with a support; and in the second step the obtained mixture is treated at a reduced pressure under a flow of inert gas at a temperature equal to or below 40° C. to obtain a supported catalyst. The method is especially useful for the preparation of dual supported catalysts, useful in the gas-phase polymerization of olefins.
    Type: Application
    Filed: December 16, 2010
    Publication date: November 8, 2012
    Applicant: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Volker Fraaije, Harald Schmitz
  • Publication number: 20120283396
    Abstract: Process for the preparation of a multimodal polyolefin polymer at temperatures of from 40 to 150° C. and pressures of from 0.
    Type: Application
    Filed: December 20, 2010
    Publication date: November 8, 2012
    Applicant: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Michael Aulbach, Harald Prang
  • Patent number: 8293855
    Abstract: A method for transitioning from a first to a second catalyst system for the olefin polymerization reaction in one reactor, wherein the first catalyst system is incompatible with the second catalyst system, is described. The method comprises the steps of a) discontinuing a first olefin polymerization reaction performed in the presence of the first catalyst system; and b) performing a second olefin polymerization reaction in the presence of the second catalyst system comprising catalyst components (A) and (B) producing, respectively, a first and a second polyolefin fraction, wherein the Mw of the first polyolefin fraction is less than the Mw of the second polyolefin fraction and the initial activity of catalyst component (A) exceeds the initial activity of catalyst component (B).
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 23, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Shahram Mihan, Massimo Covezzi
  • Patent number: 8273835
    Abstract: Process for the preparation of ethylene homopolymers or copolymers in the presence of free-radical polymerization initiators at from 100° C. to 350° C. and pressures in the range of from 160 MPa to 350 MPa in a tubular reactor with at least two spatially separated initiator injection points, wherein injecting initiator rises the temperature of the reaction mixture in the reaction zone following the injection point, and the first initiator injection point of the tubular reactor is not provided with initiator or is provided with so little initiator that the temperature of the reaction mixture does not rise more than 20° C.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 25, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Dieter Littmann, Andre-Armand Finette, Hans Joachim Meinke
  • Patent number: 8268425
    Abstract: The invention relates to a polyethylene molding composition which has a multimodal molar mass distribution and is particularly suitable for producing external sheathing of electric or information transmission cables. The molding composition has a density at a temperature of 23° C. in the range from 0.94 to 0.95 g/cm3 and an MFI190/5 in the range from 1.2 to 2.1 dg/min. It comprises from 45 to 55% by weight of a low molecular weight ethylene homopolymer A, from 30 to 40% by weight of a high molecular weight copolymer B of ethylene and another olefin having from 4 to 8 carbon atoms and from 10 to 20% by weight of an ultra high molecular weight ethylene copolymer C. The invention also relates to an electric or information transmission cable having an external sheath of the polyethylene molding composition which has a thickness in the range from 0.2 to 3 cm.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: September 18, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Heinz Vogt, Joachim Berthold
  • Patent number: 8252875
    Abstract: Process for the preparation of monoimine compounds, wherein a dicarbonyl compound is reacted in an aliphatic, non-aromatic solvent with aniline. Monoimine compounds having electron-withdrawing substituents in the ortho position and unsymmetric bis(imino) compounds and unsymmetric iron complexes prepared therefrom and the use thereof in the polymerization of olefins.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 28, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Benno Bildstein, Lars Kölling, Alexander Solchinger, Sascha Schlawjinski
  • Patent number: 8247587
    Abstract: The present invention relates to monohydroindacenyl complexes as active catalytic components in the copolymerization of ethylene. The complexes are suitable for direct preparation of ethylene copolymers having a narrow molecular distribution as well as the desired levels of low density and preferably a predetermined value of glass transition temperature Tg. The produced copolymers showing improved elastomeric performance can be prepared in a single step during polymerization reaction, thus avoiding a blending step following the polymerization step.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 21, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan
  • Patent number: 8227557
    Abstract: Specific iron complexes (A), a catalyst system for polymerization of olefins comprising at least one metal complex (A) and/or (A?), a prepolymerized catalyst system, the use of these catalyst systems for the polymerization of olefins, and a process for the preparation of polyolefins by polymerization or copolymerization of olefins in the presence of one of the described catalyst systems.
    Type: Grant
    Filed: March 1, 2008
    Date of Patent: July 24, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Fabiana Fantinel, Reynald Chevalier, Harald Schmitz
  • Patent number: 8222356
    Abstract: A process for preparing polyethylene which comprises ethylene homopolymers and/or copolymers of ethylene with 1-alkenes and has a molar mass distribution width Mw/Mn of from 5 to 30, a density of from 0.92 to 0.955 g/cm3, a weight average molar mass Mw of from 50000 g/mol to 500 000 g/mol and has from 0.01 to 20 branches/1000 carbon atoms and a z-average molar mass Mz of less than 1 million g/mol.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 17, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Dieter Lilge
  • Patent number: 8217124
    Abstract: Process for the preparation of ethylene homopolymers or copolymers in a high pressure reactor with at least two spatially separated initiator injection points by polymerizing ethylene and optionally further monomers in the presence of at least two different mixtures of free-radical polymerization initiators at from 100° C. to 350° C. and pressures in the range of from 160 MPa to 350 MPa, wherein the process comprises the following steps: a) providing at least two different initiators as solution in a suitable solvent or in liquid state, b) mixing the initiators and optionally additional solvent in at least two static mixers and c) feeding each of the mixtures to a different initiator injection point of the high pressure reactor, and apparatus for feeding initiator mixtures to a high pressure reactor with at least two spatially separated initiator injection points.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: July 10, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Dieter Littmann, Andre-Armand Finette, Jürgen Peter Mohrbutter, Sven George Wolfram
  • Patent number: 8207281
    Abstract: The present invention relates to a process for preparing transition metal compounds, in particular ansa-bisindenyl-metallocenes having nitrogen, phosphor, sulfur or oxygen comprising substituents, the corresponding transition metal compounds themselves and their use in the preparation of catalyst systems and also the use of the catalyst systems in the polymerization and copolymerization of olefins.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 26, 2012
    Assignee: Basell Polyolefine GmbH
    Inventor: Reynald Chevalier
  • Patent number: 8207269
    Abstract: A terpolymer containing: a) from 90% to 50% by weight; preferably from 90% to 70% by weight of ethylene derived units; b) from 5% to 40% by weight; preferably from 5% to 20% by weight of derived units of alpha olefin of formula CH2?CHA wherein A is a C1-C20 alkyl radical; c) from 2% to 30% by weight, preferably from 5% to 20% by weight of cycloolefins derived units. Said terpolymer being characterized by the following features i) distribution of molecular weight Mw/Mn lower than 3.5; preferably lower than 3; more preferably lower than 2.7 ii) solubility in xylene at 25° C. higher than 99%.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 26, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan
  • Publication number: 20120142873
    Abstract: A solid catalyst component comprising the product of a process comprising (a) reacting a magnesium alcoholate of formula Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with titanium tetrachloride carried out in a hydrocarbon at a temperature of 50-100° C., (b) subjecting the reaction mixture obtained in (a) to a heat treatment at a temperature of 110° C. to 200° C. for a time ranging from 3 to 25 hours (c) isolating and washing with a hydrocarbon the solid obtained in (b), said solid catalyst component having a Cl/Ti molar ratio higher than 2.5.
    Type: Application
    Filed: August 2, 2010
    Publication date: June 7, 2012
    Applicant: Basell Polyolefine GmbH
    Inventors: Freidhelm Gundert, Martin Schneider, Joachim Berthold, Bernd Lothar Marczinke
  • Patent number: 8192798
    Abstract: A process for coating the exterior surfaces of a pipeline with a polymer that is cross-linkable under exposure to water, including a) coating the exterior surface of the pipeline with at least one polymer that is cross-linkable under exposure to water, where the employed cross-linkable polymer includes alkoxy silane grafted HDPE; and b) cross-linking of the cross-linkable polymer by exposure to water at elevated temperatures so as to form a cross-linked polymer layer having a degree of cross-linking of from 30% to 80% is reached.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 5, 2012
    Assignees: Basell Polyolefine GmbH, Mulheim Pipecoatings GmbH
    Inventors: Heinz Vogt, Peter Josef Gronsfeld, Klaus Schmidt
  • Patent number: 8178050
    Abstract: A process for introducing a catalyst powder into a polymerization reactor comprising: a) metering the catalyst powder by means of a rotary valve comprising a stator, a rotor and sealing means arranged between said stator and said rotor; b) transferring a metered amount of catalyst powder from said rotary valve to a polymerization reactor; the process further comprising the steps of: c) feeding a flushing compound in one or more internal conduits arranged in the rotor of said rotary valve; d) flushing the catalyst powder away from said sealing means.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 15, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Luciano Michielin, Olga Pizzutti, legal representative, Pier Luigi Di Federico, Luciano Di Nardo
  • Patent number: 8178636
    Abstract: A process for obtaining atactic 1-butene polymer optionally containing at least one comonomer selected from ethylene, propylene or an alpha-olefin of formula CH2?CHRo, wherein Ro is a linear or branched C3-C20 alkyl group, comprising the step of polymerizing 1-butene and optionally ethylene, propylene or said alpha-olefin, in the presence of a catalyst system obtainable by contacting: a) at least one metallocene compound of formula (I) in its meso or meso-like form wherein M is an atom of a transition metal; p is an integer from 0 to 3; X, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon group; L is a divalent C1-C40 hydrocarbon radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; R1 and R2, are C1-C40 hydrocarbon radicals; T, equal to or different from each other, is a moiety of formula (IIa) or (IIb): wherein R3 is a C1-C40 hydrocarbon radical; R4 and R6, are hydrogen atoms or C1-C40 hydrocarbon radicals; R5 is a
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: May 15, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Simona Guidotti
  • Patent number: 8148588
    Abstract: The invention relates to a continuous process for preparing polyolefins having a bimodal or multimodal molar mass distribution in suspension in at least two reactors R1, R2.x, R3.y which are connected in series and in which different reaction conditions are set. In this process, the offgases A1, A2.x, A3.y, A4 and A5 leaving all the reactors connected in series are firstly collected, the collected offgases are then compressed in a compression stage 10, the compressed offgases are subsequently cooled and the cooled material is separated into a gaseous fraction and a liquid fraction. The separated fractions are then recirculated to the polymerization process at different points. The process of the invention allows the total conversion of the polymerization, based on monomer and comonomer used, to be increased to a surprising extent.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 3, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Joachim Berthold, Frank Peter Alt, Kaspar Evertz, Peter Kölle
  • Patent number: 8133832
    Abstract: The present invention relates to new catalyst supports comprising nanofibers, a catalyst system comprising these supports as well as a process for preparing nanocomposites and the nanocomposites prepared. The invention especially concerns a supported catalyst system for polymerization of olefins, comprising a support made of fibers or a fleece of fibers, wherein the mean fiber diameter is less than 1000 nm, preferably less than 500 nm and the mean fiber length is more than 200,000 nm, preferably more than 500,000 nm and especially preferred more than 1,000,000 nm as well as a process for polymerizing olefinic systems in the presence of these catalyst systems and the resulting nanocomposites.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Rolf Mülhaupt, Georg Müller