Patents Assigned to BASF Mobile Emissions Catalysts LLC
  • Patent number: 12253015
    Abstract: The present invention provides a catalytic article comprising a) a first layer comprising a nickel component and a copper component supported on a ceria component, wherein the amount of the nickel component is 0.1 to 30 wt. %, calculated as nickel oxide, based on the total weight of the first layer, and wherein the amount of the copper component is 0.01 to 5.0 wt. % calculated as copper oxide, based on the total weight of the first layer; b) a second layer comprising a platinum group metal component supported on at least one of an oxygen storage component, an alumina component and a zirconia component, wherein the platinum group metal component comprises platinum, rhodium, palladium, or any combination thereof, and wherein the amount of the platinum group metal component is 0.01 to 5.0 wt. % based on the total weight of the second layer; and c) a substrate, wherein the first layer and the second layer are separated by a barrier layer or a gap.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: March 18, 2025
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Aleksei Vjunov, Michel Deeba, Xiaolai Zheng, Tian Luo
  • Patent number: 12208361
    Abstract: The present invention relates a system for the treatment of an exhaust gas of a diesel combustion engine, said system comprising a specific NOx adsorber component, a diesel oxidation catalyst (DOC) component, a selective catalytic reduction (SCR) component, a gas heating component, and a reductant injector, wherein in said system, the specific NOx adsorber component is arranged upstream of the gas heating component, the reductant injector is arranged up-stream of the SCR component, the gas heating component is arranged upstream of the reductant injector, the DOC component is arranged upstream of the reductant injector, and the DOC component and the gas heating component are directly consecutive components. Further, the present invention relates a process for preparing such a system and use thereof.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: January 28, 2025
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Gerd Grubert, Alfred Punke, Arne Tobias Niggebaum, Sven Jare Lohmeier, Emre Emmez, Torsten Neubauer, Jeffrey B. Hoke, Shiang Sung
  • Patent number: 12201968
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat layer comprising a Pt component and a Pd component, and a second washcoat layer including a refractory metal oxide support containing manganese, a zeolite, and a platinum component is described.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: January 21, 2025
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Zabel, Susanne Stiebels, Andreas Sundermann, Olga Gerlach
  • Patent number: 12203403
    Abstract: Provided are catalyst articles, methods and systems for treating lean burn engine exhaust. Catalyst articles include selective catalytic reduction catalyst on a particulate filter. The SCR catalyst on the particulate filter provides limited NOx conversion so that unconverted NO2 is available to facilitate passive oxidation of soot trapped on the particulate filter by reaction with NO2. Systems and methods utilize such catalytic articles, and further include, e.g., a downstream selective catalytic reduction catalyst on a flow through substrate.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: January 21, 2025
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Weiyong Tang, Sanath V. Kumar, Kevin A. Hallstrom, David M. Youngren, Kenneth E. Voss
  • Publication number: 20250018383
    Abstract: The disclosure generally provides zeolites having the CHA crystalline framework and methods of preparing the same. Provided herein are CHA zeolites containing intergrowths, a controlled framework aluminum distribution, or both. Further provided are CHA zeolites wherein crystals of the zeolite material have a predominantly flake-like morphology as determined by scanning electron microscopy (SEM). Further provided are catalyst compositions, articles, and systems including CHA zeolites promoted with a metal.
    Type: Application
    Filed: September 26, 2024
    Publication date: January 16, 2025
    Applicants: BASF Mobile Emissions Catalysts LLC, Purdue Research Foundation
    Inventors: Rajamani P. Gounder, John Rocco Di Iorio, Casey Benjamin Jones, Claire Townsend Nimlos, Vivek Vattipalli, Subramanian Prasad, Eduard L. Kunkes, Ahmad Moini
  • Patent number: 12179186
    Abstract: The presently claimed invention provides a layered catalytic article comprising a first layer comprising a nickel component and a ceria component, wherein the amount of the nickel component is 1.0 to 50 wt. %, calculated as nickel oxide, based on the total weight of the first layer, and wherein the first layer is essentially free of copper; a second layer comprising a platinum group metal component, an oxygen storage component, and an alumina component, wherein the platinum group metal component comprises platinum, rhodium, palladium, or any combination thereof, and wherein the amount of the platinum group metal component is 0.0 to 5 wt. %, based on the total weight of the second layer; and a substrate. The presently claimed invention also provides a process for preparing the layered catalytic article. It further provides an exhaust system for internal combustion engines comprising a layered catalytic article.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 31, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Xiaolai Zheng, Michel Deeba, Dinh Dang
  • Patent number: 12163455
    Abstract: The present disclosure provides a catalyst composition comprising a catalytically active platinum group metal (PGM) component disposed on or impregnated in a magnetic ferrite support material, wherein the magnetic ferrite support material is capable of inductive heating in response to an applied alternating electromagnetic field. Further provided are catalyst articles comprising such compositions, and components comprising such catalyst articles, and further comprising a conductor associated with the catalyst article for receiving current and generating an alternating electromagnetic field in response thereto, wherein the conductor is positioned such that the generated alternating electromagnetic field is applied to at least a portion of the catalyst composition, inductively heating the catalyst composition directly at the catalytic site. Also provided are exhaust gas treatment systems including such components and/or articles, and methods of treating emissions utilizing such components and systems.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: December 10, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Matthew T. Caudle, Stanley A. Roth
  • Patent number: 12163454
    Abstract: The present disclosure provides catalyst compositions for NOx conversion and catalytic articles incorporating such catalyst compositions. Certain catalyst compositions include a zeolite with a silica-to-alumina ratio from 5 to 20 and sufficient Cu exchanged into cation sites of the zeolite such that the zeolite has a Cu/Al ratio of 0.1 to 0.5 and a CuO loading of 1 to 15 wt. %; and a copper trapping component in a concentration in the range of 1 to 20 wt. %, the copper trapping component including a plurality of particles having a particle size of about 0.5 to 20 microns. Certain catalyst compositions include, as the copper trapping component, alumina present as a plurality of alumina particles with a D90 particle size distribution in the range of 0.5 microns to 20 microns.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 10, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Wen-Mei Xue, Ivan Petrovic, Jeff H. Yang, Stanley A. Roth, Yuejin Li
  • Patent number: 12140063
    Abstract: Disclosed herein are emission treatment systems comprising an oxidation catalyst composition in fluid communication with an exhaust gas stream emitted from an engine that combusts both hydrocarbon fuel and hydrogen; and optionally, at least one selective catalytic reduction (SCR) composition and/or at least one three-way conversion (TWC) catalyst composition, combustion systems comprising the same, and method of treating an exhaust gas stream, such as, e.g., an exhaust gas produced by combusting hydrogen fuel during a cold-start period, using the same.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: November 12, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Shiang Sung, Pushkaraj R Patwardhan
  • Patent number: 12138619
    Abstract: The present disclosure is directed to a method for treating a gaseous exhaust stream containing nitrogen oxides (NOx) from a diesel or lean-burn gasoline engine following a cold-start of the engine The method involves contact of the gaseous exhaust stream with at least a low temperature NOx adsorber (LT-NA) component. The LT-NA component includes a rare earth metal component, a platinum group metal (PGM) component, and a dopant. The present disclosure is also directed to a method of modulating a NOx adsorption/desorption profile of an LT-NA composition, a NOx desorption temperature range of an LT-NA composition, or both.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: November 12, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Shiang Sung, Markus Koegel, Gerd Grubert, Sven Jare Lohmeier, Alfred Punke
  • Patent number: 12134088
    Abstract: The present disclosure provides catalyst compositions for NOx conversion and wall-flow filter substrates comprising such catalyst compositions. Certain catalyst compositions include a zeolite with sufficient Cu exchanged into cation sites thereof to give a Cu/Al ratio of 0.1 to 0.5 and a CuO loading of 1 to 15 wt. %; and a copper trapping component (e.g., alumina) including a plurality of particles having a D90 particle size of about 0.5 to 20 microns in a concentration of about 1 to 20 wt. %. The zeolite and copper trapping component can be in the same washcoat layer or can be in different washcoat layers (such that the copper trapping component serves as a “pre-coating” on the wall-flow filter substrate).
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 5, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventor: Yuejin Li
  • Patent number: 12134086
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat layer comprising a Pt component and a Pd component, and a second washcoat layer including a refractory metal oxide support containing manganese, a zeolite, and a platinum component is described.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: November 5, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Zabel, Susanne Stiebels, Andreas Sundermann, Olga Gerlach
  • Patent number: 12128389
    Abstract: The disclosure generally provides zeolites having the CHA crystalline framework and methods of preparing the same. Provided herein are CHA zeolites containing intergrowths, a controlled framework aluminum distribution, or both. Further provided are CHA zeolites wherein crystals of the zeolite material have a predominantly flake-like morphology as determined by scanning electron microscopy (SEM). Further provided are catalyst compositions, articles, and systems including CHA zeolites promoted with a metal.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: October 29, 2024
    Assignee: BASF Mobile Emissions Catalysts LLC
    Inventors: Rajamani P. Gounder, John Rocco Di Iorio, Casey Benjamin Jones, Claire Townsend Nimlos, Vivek Vattipalli, Subramanian Prasad, Eduard L. Kunkes, Ahmad Moini