Patents Assigned to Brigham and Women's Hospital
  • Patent number: 11793787
    Abstract: The subject matter disclosed herein is generally directed to modulating anti-tumor T cell immunity by modulating steroidogenesis. Steroidogenesis may be modulated with inhibitors of enzymes that synthesize glucocorticoids in a tumor. The inhibitor may target Cyp11a1. The inhibitor may be metyrapone. The invention further relates to modulating immune states, such as CD8 T cell immune states, in vivo, ex vivo and in vitro. The invention further relates to diagnostic and screening methods.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: October 24, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Ana Carrizosa Anderson, Asaf Madi, Nandini Acharya, Vijay K. Kuchroo, Aviv Regev
  • Patent number: 11785925
    Abstract: The present invention features a knock-in mouse comprising a mutation in an endogenous CRBN locus and methods of use thereof.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: October 17, 2023
    Assignees: THE BROAD INSTITUTE, INC., THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Benjamin Levine Ebert, Jan Krönke, Steven A. Carr, Namrata D. Udeshi, Emma Fink
  • Patent number: 11786106
    Abstract: An endoscope imaging system comprises a robotic controlled steerable catheter and an imaging device removably arranged in a tool channel of the catheter. One or more sensors or markers are configured to map a positional relation of the catheter with respect to an orientation of the imaging device. A controller drives the steerable catheter to manipulate the distal end thereof, while the imaging device acquires an image of a subject or sample. While the imaging device acquires the image, a processor calculates a change in positional relation of the catheter with respect to the orientation of the imaging device based on information provided by the one or more sensors or markers. An output unit provides an indication for remapping the orientation of the steerable catheter with respect to the orientation of the imaging device.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: October 17, 2023
    Assignees: Canon U.S.A., Inc., The Brigham and Women's Hospital Inc.
    Inventors: Fumitaro Masaki, Franklin King, Nobuhiko Hata, Takahisa Kato
  • Patent number: 11787795
    Abstract: Compositions and methods are provided for the inhibition of the function of RNA guided endonucleases, including the identification and use of such inhibitors.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 17, 2023
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE BRIGHAM AND WOMEN'S HOSPITAL, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Amit Choudhary, Peng Wu, Basudeb Maji, Elisa Franco, Hari K. K. Subramanian
  • Patent number: 11788943
    Abstract: A system and method for sorting sperm is provided. The system includes a housing and a microfluidic system supported by the housing. The system also includes an inlet providing access to the microfluidic system to deliver sperm to the microfluidic system and an outlet providing access to the microfluidic system to harvest sorted sperm from the microfluidic system. The microfluidic system provides a flow path for sperm from the inlet to the outlet and includes at least one channel extending from the inlet to the outlet to allow sperm delivered to the microfluidic system through the inlet to progress along the flow path toward the outlet. The microfluidic system also includes a filter including a first plurality of micropores arranged in the flow path between the inlet and the outlet to cause sperm traveling along the flow path to move against through the filter and gravity to reach the outlet.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: October 17, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Utkan Demirci, Waseem Asghar
  • Patent number: 11788144
    Abstract: The invention relates to method for identifying and selecting a subject with increased risk of developing a cardiometabolic disease and optionally, providing a personalized medicine method, which may involve sequencing at least part of a genome of one or more cells in a blood sample of the subject and identifying from the sequencing one or more mutations in one or more somatic mutations.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: October 17, 2023
    Assignees: The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Benjamin Levine Ebert, Siddhartha Jaiswal, Sekar Kathiresan
  • Patent number: 11771829
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject) such as a liquid pharmaceutical agent.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 3, 2023
    Assignees: Massachusetts Institute of Technology, Novo Nordisk A/S, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, Morten Revsgaard Frederiksen, Mikkel Oliver Jespersen, Brian Mouridsen, Jesper Windum, Mette Poulsen, Brian Jensen, Jorrit Jeroen Water, Mikkel Wennemoes Hvitfeld Ley, Xiaoya Lu, Andreas Vegge
  • Publication number: 20230285227
    Abstract: An ingestible capsule includes a housing forming a cavity and having a textured outer surface. The textured outer surface forms a helical depression and a plurality of protruding studs disposed in the helical depression. The capsule further includes a therapeutic agent disposed in or on the housing. The capsule also includes a biodegradable coating on the textured outer surface of the housing, the biodegradable coating configured to dissolve in a fluid having a pH of 1.5 to 9.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 14, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Shriya Sruthi Srinivasan, Carlo Giovanni TRAVERSO, Robert S. LANGER, Amro A. Alshareef
  • Publication number: 20230284929
    Abstract: The gastrointestinal capsule provides mechanical stimulation within the gastrointestinal tract. The capsule may be deployed in a subject's gastrointestinal tract orally by the subject ingesting the capsule. The capsule may mechanically stimulate any desired region within the gastrointestinal tract, including the stomach, small intestine, and large intestine. The mechanical stimulations provided by the capsule are applied to a portion of the inner walls or lining of a section of the gastrointestinal tract to simulate satiety.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 14, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Shriya Sruthi Srinivasan, Carlo Giovanni TRAVERSO, Robert S. LANGER, Amro A. Alshareef
  • Patent number: 11751832
    Abstract: Systems and techniques that facilitate automated localization of large vessel occlusions are provided. In various embodiments, an input component can receive computed tomography angiogram (CTA) images of a patient's brain. In various embodiments, a localization component can determine, via a machine learning algorithm, a location of a large vessel occlusion (LVO) in the patient's brain based on the CTA images. In various instances, the location of the LVO can comprise a laterality and an occlusion site. In various aspects, the laterality can indicate a right side or a left side of the patient's brain, and the occlusion site can indicate an internal carotid artery (ICA), an M1 segment of a middle cerebral artery (MCA) or an M2 segment of an MCA. In various cases, a visualization component can generate and display to a user a three-dimensional maximum intensity projection (MIP) reconstruction of the patient's brain based on the CTA images to facilitate visual verification of the LVO by the user.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: September 12, 2023
    Assignees: GE Precision Healthcare LLC, Partners HealthCare System, Inc., The General Hospital Corporation, The Brigham and Women's Hospital, Inc.
    Inventors: Markus Daniel Herrmann, John Francis Kalafut, Bernardo Canedo Bizzo, Christopher P. Bridge, Michael Lev, Charles J. Lu, James Hillis
  • Patent number: 11744558
    Abstract: A system and method is provided for controlling against artifacts in medical imaging. The system includes an array of ultrasound sensors, each ultrasound sensor in the array of ultrasound sensors located at a variety of different spatial locations on a subject being imaged by an imaging system configured to generate medical imaging data and each ultrasound sensor configured to receive ultrasound sensor data. The system also includes a processor configured to receive the ultrasound sensor data from the array of ultrasound sensors, multiplex the ultrasound sensor data, generate anatomical information from the multiplexed ultrasound sensor data and correlated to the imaging system, and deliver the anatomical information to the imaging system in a form for use by the imaging system to either acquire the imaging data using the anatomical information or reconstruct the imaging data using the anatomical information.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: September 5, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL
    Inventors: Bruno Madore, Frank R. Preiswerk
  • Patent number: 11739331
    Abstract: The invention relates to compositions and methods for inhibiting macrophage activation via modulating PARP9 and/or PARP14 expression or activity, such as small molecules, RNAi and antibodies.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: August 29, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Hiroshi Iwata, Masanori Aikawa, Takuya Hara, Sasha Singh, Piero Ricchiuto, Hideo Yoshida, Iwao Yamada
  • Patent number: 11730516
    Abstract: A uterine manipulator can include a shaft including a first end, a second end, and a channel along an axis of the shaft, a handle coupled to the first end of the shaft, and a triangular balloon coupled to the second end of the shaft. The triangular balloon can be configured to inflate upon insertion into a vagina via a fluid injected into the channel of the shaft.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 22, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Jon Einarsson
  • Patent number: 11723972
    Abstract: The present invention is based, in part, on the discovery that galectin-1 (Gal1) plays a role in viral-associated PTLD, e.g., EBV-associated PTLD and hypoxia associated angiogenesis disorders. Accordingly, the invention relates to compositions, kits, and method for diagnosing, prognosing, monitoring, treating and modulating viral-associated PTLD, e.g., EBV-associated PTLD and hypoxia associated angiogenesis disorders.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: August 15, 2023
    Assignees: Dana-Farber Cancer Institute, Inc., The Brigham and Women's Hospital, Inc., Consejo Nacional De Investigaciones Científicas y Técnicas (CONICET), Fundacion Sales
    Inventors: Margaret Shipp, Jing Ouyang, Kunihiko Takeyama, Jeffery L. Kutok, Scott J. Rodig, Gabriel Rabinovich, Diego Omar Croci Russo, Mariana Salatino
  • Patent number: 11717283
    Abstract: A suturing device includes an elongated body having an outer wall defining an interior space of the body, a shaft located in the interior space, and a needle mounted on a distal end of the shaft. The needle has a distal section transverse to a longitudinal axis of the shaft. The distal section of the needle terminates in a first jaw and a second jaw forming a forceps defining a piercing tip. The first jaw and second jaw have a grasping position wherein the first jaw and second jaw grasp a suturing material, and a release position wherein the first jaw and second jaw release the suturing material. After grasping the suturing material with the needle, the shaft rotates the needle to advance the needle and suturing material through tissue and mesh placed on the tissue. Spaced apart portions of the suturing material are then fused to create a suture.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 8, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Jon Einarsson
  • Patent number: 11712421
    Abstract: Self-actuating articles including, for example, self-actuating needles and/or self-actuating biopsy punches, are generally provided. Advantageously, the self-actuating articles described herein may be useful as a general platform for delivery of a wide variety of pharmaceutical drugs that are typically delivered via injection directly into tissue due to degradation in the GI tract. The self-actuating articles described herein may also be used to deliver sensors and/or take biopsies without the need for an endoscopy. In some embodiments, the article comprises a spring (e.g., a coil spring, a beam, a material having particular mechanical recovery characteristics).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: August 1, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20230238146
    Abstract: The systems and methods described herein determine metrics of cardiac or vascular performance, such as cardiac output, and can use the metrics to determine appropriate levels of mechanical circulatory support to be provided to the patient. The systems and methods described determine cardiac performance by determining aortic pressure measurements (or other physiologic measurements) within a single heartbeat or across multiple heartbeats and using such measurements in conjunction with flow estimations or flow measurements made during the single heartbeat or multiple heartbeats to determine the cardiac performance, including determining the cardiac output. By utilizing a mechanical circulatory support system placed within the vasculature, the need to place a separate measurement device within a patient is reduced or eliminated. The system and methods described herein may characterize cardiac performance without altering the operation of the heart pump (e.g., without increasing or decreasing pump speed).
    Type: Application
    Filed: December 23, 2022
    Publication date: July 27, 2023
    Applicants: ABIOMED, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Qing Tan, Ahmad El Katerji, Noam Josephy, Elazer R. Edelman, Brian Yale Chang, Steven Keller, Sonya Sanat Bhavsar
  • Patent number: 11709122
    Abstract: A system and method for sorting sperm is provided. The system includes a housing and a microfluidic system supported by the housing. The system also includes an inlet providing access to the microfluidic system to deliver sperm to the microfluidic system and an outlet providing access to the microfluidic system to harvest sorted sperm from the microfluidic system. The microfluidic system provides a flow path for sperm from the inlet to the outlet and includes at least one channel extending from the inlet to the outlet to allow sperm delivered to the microfluidic system through the inlet to progress along the flow path toward the outlet. The microfluidic system also includes a filter including a first plurality of micropores arranged in the flow path between the inlet and the outlet to cause sperm traveling along the flow path to move against through the filter and gravity to reach the outlet.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 25, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Utkan Demirci, Waseem Asghar
  • Patent number: 11701437
    Abstract: A method for the systemic delivery of a polypeptide within a subject is provided by creating genetically modified skin cells via topical introduction of a genetically engineered virus which delivers a nucleic acid encoding a therapeutic polypeptide for expression by the skin cells, wherein the expressed therapeutic polypeptide is secreted by the skin cells and is introduced into the circulatory system of the subject.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: July 18, 2023
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Denitsa M. Milanova, George M. Church, Noah Davidsohn, Carl Schoellhammer, Robert S. Langer, Anna I. Mandinova, Carlo Giovanni Traverso
  • Publication number: 20230218535
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface. In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent. In some cases, upon contact of the tissue with the tissue engaging surface of the article, the self-righting article may be configured to release one or more tissue interfacing components. In some cases, the tissue interfacing component may comprise and/or be associated with the pharmaceutical agent.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 13, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, Michael Williams, Jacob Wainer