Patents Assigned to Cabot Microelectronics Corporation
  • Patent number: 8247327
    Abstract: The invention provides chemical-mechanical polishing (CMP) compositions and methods for polishing a silicon-containing substrate. A method of the invention comprises the steps of contacting a silicon-containing substrate with a polishing pad and an aqueous CMP composition, and causing relative motion between the polishing pad and the substrate while maintaining a portion of the CMP composition in contact with the surface of the substrate to abrade at least a portion of the substrate. The CMP composition comprises a ceria abrasive, a polishing additive bearing a functional group with a pKa of about 4 to about 9, a nonionic surfactant with an hydrophilic portion and a lipophilic portion wherein the hydrophilic portion has a number average molecular weight of about 500 g/mol or higher, and an aqueous carrier, wherein the pH of the composition is 7 or less. The method reduces defects on the wafers, particularly local areas of high removal.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 21, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Francesco De Rege Thesauro, Zhan Chen
  • Patent number: 8226841
    Abstract: The invention provides a chemical-mechanical polishing composition comprising alpha alumina, fumed alumina, silica, an oxidizing agent that oxidizes nickel-phosphorous, oxalic acid, optionally, tartaric acid, optionally, a nonionic surfactant, optionally, a biocide, and water. The invention also provides a method of chemically-mechanically polishing a substrate comprising contacting a substrate with a polishing pad and the chemical-mechanical polishing composition, moving the polishing pad and the polishing composition relative to the substrate, and abrading at least a portion of the substrate to polish the substrate.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: July 24, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Selvaraj Palanisamy Chinnathambi, Haresh Siriwardane
  • Patent number: 8167684
    Abstract: A chemical mechanical polishing slurry for polishing a copper layer without excessively or destructively polishing a barrier layer beneath the copper layer is disclosed and includes an acid, a surfactant, and a silica sol having silica polishing particles that are surface modified with a surface charge modifier and that have potassium ions attached thereto. A method for preparing the chemical mechanical polishing slurry and a chemical mechanical polishing method using the chemical mechanical polishing slurry are also disclosed.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: May 1, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Hui-Fang Hou, Wen-Cheng Liu, Yen-Liang Chen, Jui-Ching Chen
  • Patent number: 8162723
    Abstract: The invention is directed to a method for polishing a surface comprising tungsten carbide, comprising contacting a surface comprising tungsten carbide with an oxidizing agent, a polishing component, and a liquid carrier, and abrading at least a portion of the surface to polish the surface. The invention further provides a method for reconditioning a workpiece comprising tungsten carbide. The invention also provides a cutting tool insert having a highly polished surface.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: April 24, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Clifford Spiro, George Steuer, Frank B. Kaufman
  • Publication number: 20120094489
    Abstract: The present invention provides a chemical-mechanical polishing (CMP) composition suitable for polishing a silicon nitride-containing substrate while suppressing polysilicon removal from the substrate. The composition comprises abrasive particles suspended in an acidic aqueous carrier containing a surfactant comprising an alkyne-diol, an alkyne diol ethoxylate, or a combination thereof. Methods of polishing a semiconductor substrate therewith are also disclosed.
    Type: Application
    Filed: June 18, 2010
    Publication date: April 19, 2012
    Applicant: CABOT MICROELECTRONICS CORPORATION
    Inventors: Kevin Moeggenborg, William Ward, Ming-Shih Tsai, Francesco De Rege Thesauro
  • Patent number: 8157876
    Abstract: A wiresaw cutting fluid composition of the present invention comprises about 25 to about 75% by weight of a particulate abrasive suspended in an aqueous carrier containing a polymeric viscosity modifier that comprises a polymer including a majority of non-ionic monomer units (preferably 100 mol % non-ionic monomer units), has a number average molecular weight (Mn) of at least about 5 kDa, and is present in the composition at a concentration sufficient to provide a Brookfield viscosity for the composition in the range of about 50 to about 1000 cP, e.g., 50 to about 700 cP, at about 25° C. at a spindle rotation rate of about 60 rpm. In one embodiment, the viscosity modifier comprises a polymer having a weight average molecular weight (Mw) of at least about 200 kDa. When a viscosity modifier of 200 kDa or greater Mw is utilized, a preferred wiresaw cutting method the cutting fluid is circulated and applied by pumps and nozzles operating at a relatively low shear rate of not more than about 104 s?1.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 17, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Chul Woo Nam, William Ward, Ramasubramanyam Nagarajan
  • Patent number: 8138091
    Abstract: The invention provides a chemical-mechanical polishing composition comprising a cationic abrasive, a cationic polymer, an inorganic halide salt, and an aqueous carrier. The invention further provides a method of chemically-mechanically polishing a substrate with the aforementioned polishing composition. The polishing composition exhibits selectivity for removal of silicon nitride over removal of silicon oxide and polysilicon.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 20, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Jeffrey M. Dysard, Timothy P. Johns
  • Patent number: 8101093
    Abstract: The invention provides methods of polishing a noble metal-containing substrate with one of two chemical-mechanical polishing compositions. The first chemical-mechanical polishing composition comprises (a) an abrasive comprising ?-alumina, (b) about 0.05 to about 50 mmol/kg of ions of calcium, strontium, barium, or mixtures thereof, and (c) a liquid carrier comprising water. The second chemical-mechanical polishing composition comprises (a) an abrasive selected from the group consisting of ?-alumina, ?-alumina, ?-alumina, ?-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (b) about 0.05 to about 3.5 mmol/kg of ions of calcium, strontium, barium, magnesium, zinc, or mixtures thereof, and (c) a liquid carrier comprising water.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 24, 2012
    Assignee: Cabot Microelectronics Corporation
    Inventors: Francesco de Rege Thesauro, Kevin J. Moeggenborg, Vlasta Brusic, Benjamin P. Bayer
  • Patent number: 8075372
    Abstract: The invention provides a polishing pad for chemical-mechanical polishing comprising a polymeric material comprising two or more adjacent regions, wherein the regions have the same polymer formulation and the transition between the regions does not include a structurally distinct boundary. In a first embodiment, a first region and a second adjacent region have a first and second non-zero void volume, respectively, wherein the first void volume is less than the second void volume. In a second embodiment, a first non-porous region is adjacent to a second adjacent porous region, wherein the second region has an average pore size of about 50 ?m or less. In a third embodiment, at least two of an optically transmissive region, a first porous region, and an optional second porous region, are adjacent. The invention further provides methods of polishing a substrate comprising the use of the polishing pads and a method of producing the polishing pads.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: December 13, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventor: Abaneshwar Prasad
  • Patent number: 8062096
    Abstract: The invention is directed to a method of polishing a surface of a substrate comprising aluminum, comprising contacting a surface of the substrate with a polishing pad and a polishing composition comprising an abrasive, an agent that oxidizes aluminum, and a liquid carrier, and abrading at least a portion of the surface to remove at least some aluminum from the substrate and to polish the surface of the substrate, wherein the abrasive is in particulate form and is suspended in the liquid carrier.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 22, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Vlasta Brusic, Richard Jon Jenkins, Christopher C. Thompson
  • Patent number: 8057561
    Abstract: The invention provides an isolated, particulate polyoxometalate complex comprising a water-soluble cationic polymer and a polyoxometalate compound ionically bound to the cationic polymer. The polyoxometalate compound can be an isopolyoxometalate compound, such as an isopolytungstate, or a heteropolyoxometalate compound. The invention further provides a chemical-mechanical polishing composition comprising a preformed polyoxometalate abrasive, as well as a method of chemically-mechanically polishing a substrate therewith.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 15, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Daniela White, John Parker
  • Patent number: 8038752
    Abstract: The invention provides a chemical-mechanical polishing composition comprising an abrasive, metal ions (M) having a M-O—Si bond energy equal to or greater than about 3 kcal/mol, and water. The invention further provides a method for polishing a substrate using the aforementioned chemical-mechanical polishing composition.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: October 18, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventor: Phillip W. Carter
  • Publication number: 20110247996
    Abstract: The inventive polishing composition comprises an abrasive, an aqueous medium, a surfactant in an amount above its critical micelle concentration, and a hydrophobic surface active compound. The invention also provides a method of using a polishing composition.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 13, 2011
    Applicant: CABOT MICROELECTRONICS CORPORATION
    Inventors: Francesco De Rege Thesauro, Jason Keleher
  • Publication number: 20110240002
    Abstract: The present invention provides an aqueous wiresaw cutting fluid composition that reduces the amount of hydrogen produced during a wiresaw cutting process. The composition is comprised of an aqueous carrier, a particulate abrasive, a thickening agent, and a hydrogen suppression agent.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 6, 2011
    Applicant: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Nevin Naguib Sant
  • Patent number: 8017524
    Abstract: The invention provides a chemical-mechanical polishing composition comprising wet-process silica, a stabilizer compound, a potassium salt, a secondary amine compound, and water. The invention further provides a method of polishing a substrate with the polishing composition.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 13, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Michael White, Jeffrey Gilliland, Lamon Jones, Alicia Walters
  • Patent number: 8008202
    Abstract: The present invention provides a chemical-mechanical polishing (CMP) composition for polishing a ruthenium-containing substrate in the presence of an oxidizing agent such as hydrogen peroxide without forming a toxic level of ruthenium tetroxide during the polishing process. The composition comprises a particulate abrasive (e.g., silica, alumina, and/or titania) suspended in an aqueous carrier containing a ruthenium-coordinating oxidized nitrogen ligand (N—O ligand), such as a nitroxide (e.g., 4-hydroxy-TEMPO). In the presence of the oxidizing agent, the N—O ligand prevents the deposition of ruthenium species having an oxidation state of IV or higher on the surface of the substrate, and concomitantly forms a soluble Ru(II) N—O coordination complex with oxidized ruthenium formed during CMP of the substrate. CMP methods for polishing ruthenium-containing surfaces with the CMP composition are also provided.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 30, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Daniela White, John Parker
  • Patent number: 7998335
    Abstract: The invention relates to a method of polishing a substrate comprising at least one metal layer by applying an electrochemical potential between the substrate and at least one electrode in contact with a polishing composition comprising a reducing agent or an oxidizing agent.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: August 16, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Paul M. Feeney, Vlasta Brusic
  • Patent number: 7998228
    Abstract: A composition suitable for tantalum chemical-mechanical polishing (CMP) comprises about 0.1 to about 10 percent by weight of a zirconia or fumed alumina abrasive, about 0.1 to about 10 percent by weight of an alkali metal iodate salt and an aqueous carrier. The composition has a pH of at least about 10. The composition is utilized to polish a surface of a tantalum-containing substrate.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: August 16, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventor: Shoutian Li
  • Patent number: 7998866
    Abstract: The inventive method comprises chemically-mechanically polishing a substrate comprising at least one layer of silicon carbide with a polishing composition comprising a liquid carrier, an abrasive, and an oxidizing agent.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: August 16, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Michael L. White, Lamon Jones, Jeffrey Gilliland, Kevin Moeggenborg
  • Patent number: 7994057
    Abstract: The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier, a cationic polymer, an acid, and abrasive particles that have been treated with an aminosilane compound.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: August 9, 2011
    Assignee: Cabot Microelectronics Corporation
    Inventors: Jeffrey Dysard, Sriram Anjur, Steven Grumbine, Daniela White, William Ward