Patents Assigned to Carnegie Mellon University
  • Patent number: 11682276
    Abstract: Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. A robotic material that mimics soft tissues found in biological systems may be used to identify, compute, and respond to damage. This material includes liquid metal droplets dispersed in soft elastomers that rupture when damaged to create electrically conductive pathways that are identified with a soft active-matrix grid. These technologies may be used to autonomously identify damage, calculate severity, and respond to prevent failure within robotic systems.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: June 20, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D Bartlett, Eric J Markvicka
  • Patent number: 11672887
    Abstract: In one aspect, a method includes providing support material within which the structure is fabricated, depositing, into the support material, structure material to form the fabricated structure, and removing the support material to release the fabricated structure from the support material. The provided support material is stationary at an applied stress level below a threshold stress level and flows at an applied stress level at or above the threshold stress level during fabrication of the structure. The provided support material is configured to mechanically support at least a portion of the structure and to prevent deformation of the structure during the fabrication of the structure. The deposited structure material is suspended in the support material at a location where the structure material is deposited. The structure material comprises a fluid that transitions to a solid or semi-solid state after deposition of the structure material.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 13, 2023
    Assignee: Carnegie Mellon University
    Inventors: Adam Feinberg, Thomas Hinton
  • Patent number: 11676713
    Abstract: A data processing system digitally processes data feeds of inhaler device operation. The data feed represents operation of an inhaler device. The system indexes the live data feed with a key value representing the inhaler device for which the live data feed is obtained. For a particular key value indexed in the in-memory data storage, the system queries, a data feed representing physical operation of an inhaler device, segments the live data feed for that particular key value into a plurality of data samples, process at least a portion of the data samples to classify each of the processed data samples; outputs a prompt specifying whether operation of the inhaler device is within a threshold range of operation. Audio data, temperature data, image data, and ranging data can be processed to classify operation of the inhaler device and the order of operations of the inhaler device.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: June 13, 2023
    Assignee: Carnegie Mellon University
    Inventors: Po-yao Huang, Alexander G. Hauptmann
  • Patent number: 11676025
    Abstract: A method for training an automated learning system includes processing training input with a first neural network and processing the output of the first neural network with a second neural network. The input layer of the second neural network corresponding to the output layer of the first neural network. The output layer of the second neural network corresponding to the input layer of the first neural network. An objective function is determined using the output of the second neural network and a predetermined modification magnitude. The objective function is approximated using random Cauchy projections which are propagated through the second neural network.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 13, 2023
    Assignees: Robert Bosch GmbH, Carnegie Mellon University
    Inventors: Jeremy Zico Kolter, Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen
  • Patent number: 11672968
    Abstract: A blood pump includes a housing having an inlet. A rotor disposed in the housing and configured to rotate substantially about the axis to pump blood from the inlet to the outlet. A stator is disposed within the housing and configured to drive rotation of the rotor about the axis. A bearing mechanism for supporting the rotor inside the housing includes a magnetic bearing configured to magnetically support the rotor inside the housing in a radial direction from the axis. The bearing mechanism includes a sliding bearing configured to physically support the rotor inside the housing in an axial direction along the axis of the housing and allow rotation of the rotor substantially about the axis, the sliding bearing comprising at least one point of contact where the rotor is configured to physically contact a trunnion affixed to the housing.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: June 13, 2023
    Assignee: Carnegie Mellon University
    Inventor: James F. Antaki
  • Patent number: 11676294
    Abstract: A method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 13, 2023
    Assignees: William Marsh Rice University, Carnegie Mellon University
    Inventors: Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin C. Sankaranarayanan, Ashok Veeraraghavan
  • Patent number: 11672651
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 13, 2023
    Assignees: CARNEGIE MELLON UNIVERSITY, UNIVERSITY OF PITTSBURGH
    Inventors: Masahiro Yoshida, C. Douglas Bernstein, Onur Dur, Kerem Pekkan
  • Patent number: 11661672
    Abstract: A method of forming crystalline sheets using a Horizontal Ribbon Growth process, where the sheet of material formed in the process is withdrawn from a crucible in a specified manner to reduce instabilities in the process and to regulate crystal growth dynamics.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: May 30, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: B. Erik Ydstie, Eyan Peter Noronha
  • Patent number: 11654593
    Abstract: Provided is a system, method, and apparatus for forming surface designs in hard-setting materials. The method includes depositing a hard-setting material mix to create a construction component, controlling a movable unit to manipulate a surface of the construction component with a first profile tool arranged on the movable unit based on surface design data before the hard-setting material mix sets, and controlling the movable unit or at least one other movable unit to manipulate the surface of the construction component with a second profile tool arranged on the movable unit or the at least one other movable unit based on the surface design data before the hard-setting material mix sets, wherein the second profile tool comprises a blade edge and a trowel edge.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 23, 2023
    Assignee: Carnegie Mellon University
    Inventor: Joshua David Bard
  • Patent number: 11655271
    Abstract: Provided herein are methods, reagents, and kits for isolating polypeptides, such as a proteome. Also provided herein is a modified trypsin polypeptide that is resistant to autolysis, and that can be selectively-separated from a biological sample once digestion is complete.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 23, 2023
    Assignee: Carnegie Mellon University
    Inventors: Jonathan Minden, Amber Lucas
  • Publication number: 20230149171
    Abstract: An expandable valved conduit for pediatric right ventricular outflow tract (RVOT) reconstruction is disclosed. The valved conduit may provide long-term patency and resistance to thrombosis and stenosis. The valved conduit may enlarge radially and/or longitudinally to accommodate the growing anatomy of the patient. Further, a method is disclosed for the manufacture of the valved conduit based in part on a plastically deformable biocompatible polymer and a computer-optimized valve design developed for such an expandable valved conduit.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: C. Douglas BERNSTEIN, Arush KALRA
  • Patent number: 11644682
    Abstract: A novel class of imaging systems that combines diffractive optics with 1D line sensing is disclosed. When light passes through a diffraction grating or prism, it disperses as a function of wavelength. This property is exploited to recover 2D and 3D positions from line images. A detailed image formation model and a learning-based algorithm for 2D position estimation are disclosed. The disclosure includes several extensions of the imaging system to improve the accuracy of the 2D position estimates and to expand the effective field-of-view. The invention is useful for fast passive imaging of sparse light sources, such as streetlamps, headlights at night and LED-based motion capture, and structured light 3D scanning with line illumination and line sensing.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: May 9, 2023
    Assignee: Carnegie Mellon University
    Inventors: Matthew O'Toole, Mark Sheinin, Srinivasa Narasimhan
  • Publication number: 20230134699
    Abstract: A hybrid microneedle array and a method of fabricating the array is used for delivery of drugs, vaccines, and other therapeutic agents into tissues, including skin, heart, inner ear, and other tissues. The microneedle array can facilitate precise and reproducible intradermal delivery. Each microneedle has a dissolvable tip with a hollow body permitting the delivery of a variety of therapeutic agents into the skin. A fabrication process utilizes a two part mold to separately mold a dissolvable tip and a solid body portion of each microneedle in the array.
    Type: Application
    Filed: April 9, 2021
    Publication date: May 4, 2023
    Applicant: Carnegie Mellon University
    Inventors: O. Burak Ozdoganlar, Ant Yucesoy
  • Patent number: 11639021
    Abstract: A method and device for fabricating vascular networks in for tissue engineering. The vascular network is embedded in a porous scaffold and is created from a sacrificial wax template, according to one embodiment. A extrusion-based three dimensional printer is used to create the template, wherein the printer utilizes an extruder incorporating a mixer to maintain the consistency of the extrudate.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: May 2, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Zhou Yu, Philip R. LeDuc, O. Burak Ozdoganlar
  • Patent number: 11636344
    Abstract: During training of deep neural networks, a Copernican loss (LC) is designed to augment the standard Softmax loss to explicitly minimize intra-class variation and simultaneously maximize inter-class variation. Copernican loss operates using the cosine distance and thereby affects angles leading to a cosine embedding, which removes the disconnect between training and testing.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 25, 2023
    Assignee: Carnegie Mellon University
    Inventors: Marios Savvides, Dipan Kumar Pal
  • Patent number: 11630569
    Abstract: Internet of Things (“IoT”) appliances are gaining consumer traction, from smart thermostats to smart speakers. These devices generally have limited user interfaces, most often small buttons and touchscreens, or rely on voice control. Further, these devices know little about their surroundings—unaware of objects, people and activities around them. Consequently, interactions with these “smart” devices can be cumbersome and limited. The present invention presents an approach that enriches IoT experiences with rich touch and object sensing, offering a complementary input channel and increased contextual awareness. The present invention incorporates a range sensing technology into the computing devices, providing an expansive ad hoc plane of sensing just above the surface with which a device is associated. Additionally, the present invention can recognize and track a wide array of objects, including finger touches and hand gestures.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: April 18, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Christopher Harrison, Gierad Laput
  • Publication number: 20230100132
    Abstract: A computer-program product storing instructions which, when executed by a computer, cause the computer to, for one or more iterations, update parameters associated with a machine-learning network utilizing perturbations for input data, wherein the perturbations are sampled utilizing Markov chain Monte Carlo, identify a loss value associated with each perturbation in each iteration, and evaluate the machine learning network by identifying an average loss value across each iteration and outputting the average loss value.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Leslie RICE, Jeremy KOLTER, Wan-Yi LIN
  • Patent number: 11612768
    Abstract: Disclosed herein is a novel technique that employs non-invasive ultrasound for spatiotemporal modulation of the refractive index in a medium to define and control the trajectory of light within the medium itself, thereby creating a virtual sculpted lens. By varying the amplitude of ultrasonic waves in the medium, the numerical aperture (NA) value of the virtual sculpted lens can be changed. The location of the focus of the virtual sculpted lens can be precisely scanned within a scattering tissue.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: March 28, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Maysamreza Chamanzar, Matteo Giuseppe Scopelliti, Yasin Karimi Chalmiani
  • Patent number: 11609281
    Abstract: A method includes producing an amorphous precursor to a nanocomposite, the amorphous precursor comprising a material that is substantially without crystals not exceeding 20% volume fraction; performing devitrification of the amorphous precursor, wherein the devitrification comprises a process of crystallization; forming, based on the devitrification, the nanocomposite with nano-crystals that contains an induced magnetic anisotropy; tuning, based on one or more of composition, temperature, configuration, and magnitude of stress applied during annealing and modification, the magnetic anisotropy of the nanocomposite; and adjusting, based on the tuned magnetic anisotropy, a magnetic permeability of the nanocomposite.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 21, 2023
    Assignee: Carnegie Mellon University
    Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, Vladimir Keylin, Joseph Huth, Samuel J. Kernion
  • Patent number: 11603369
    Abstract: Described herein are divalent nucleobases that each binds two nucleic acid strands, matched or mismatched when incorporated into a nucleic acid or nucleic acid analog backbone, such as in a ?-peptide nucleic acid (?PNA). Also provided are genetic recognition reagents comprising one or more of the divalent nucleobases and a nucleic acid or nucleic acid analog backbone, such as a ?PNA backbone. Uses for the divalent nucleobases and monomers and genetic recognition reagents containing the divalent nucleobases also are provided.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: March 14, 2023
    Assignee: Carnegie Mellon University
    Inventors: Danith H. Ly, Shivaji A. Thadke, Ali Nakhi, J. Dinithi Rashmini Perera