Abstract: Control Devices are disclosed including RNA destabilizing elements (RDE), RNA control devices, and destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) or other transgenes in eukaryotic cells. Multicistronic vectors are also disclosed for use in engineering host eukaryotic cells with the CARs and transgenes under the control of the control devices. These control devices can be used to optimize expression of CARs in the eukaryotic cells so that, for example, effector function is optimized. CARs and transgene payloads can also be engineered into eukaryotic cells so that the transgene payload is expressed and delivered after stimulation of the CAR on the eukaryotic cell.
Abstract: The present invention relates generally to the field of making novel antigen binding domains against infectious diseases. The present invention also relates to novel CARs that utilize the novel antigen binding domains as an extracellular element. The present invention also relates to use of the novel antigen binding domains as therapeutic agents.
Abstract: The present invention relates generally to the field of making novel antigen binding domains against infectious diseases. The present invention also relates to novel CARs that utilize the novel antigen binding domains as an extracellular element. The present invention also relates to use of the novel antigen binding domains as therapeutic agents.
Abstract: Control Devices are disclosed including RNA destabilizing elements (RDE), RNA control devices, and destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) or other transgenes in eukaryotic cells. Multicistronic vectors are also disclosed for use in engineering host eukaryotic cells with the CARs and transgenes under the control of the control devices. These control devices can be used to optimize expression of CARs in the eukaryotic cells so that, for example, effector function is optimized. CARs and transgene payloads can also be engineered into eukaryotic cells so that the transgene payload is expressed and delivered after stimulation of the CAR on the eukaryotic cell.
Abstract: The present invention relates generally to the field of RNA Control Devices and/or destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) in eukaryotic cells. The present invention also relates to split CARs (Side-CARs) in eukaryotic cells. More specifically, the present invention relates to DEs, RNA Control Devices, and/or side-CARs combined with Chimeric Antigen Receptors to make small molecule actuatable CAR polypeptides. The present invention also relates to DE-CARs, Smart CARs (Smart=small molecule actuatable RNA trigger), Smart-DE-CARs, and/or Side-CARs for use in the treatment of disease.
Abstract: In an aspect, the present invention relates generally to RNA control devices, destabilizing elements (“DE”), Solute Carrier Transporters (“SLC”), and/or control regions where some or all of these control elements are ligand matched. In another aspect, the present invention relates to ligand matched control regions, SLCs and/or control devices that produce control systems with desired properties. In a further aspect, the present invention relates to use of these control systems to control expression of transgenes in eukaryotic cells including, for example, stem cells, hematopoietic cells, and host cells for gene therapy.
Abstract: Control Devices are disclosed including RNA destabilizing elements (RDE), RNA control devices, and destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) or other transgenes in eukaryotic cells. Multicistronic vectors are also disclosed for use in engineering host eukaryotic cells with the CARs and transgenes under the control of the control devices. These control devices can be used to optimize expression of CARs in the eukaryotic cells so that, for example, effector function is optimized. CARs and transgene payloads can also be engineered into eukaryotic cells so that the transgene payload is expressed and delivered after stimulation of the CAR on the eukaryotic cell.
Abstract: The present invention relates generally to the field of RNA Control Devices and/or destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) in eukaryotic cells. The present invention also relates to split CARs (Side-CARs) in eukaryotic cells. More specifically, the present invention relates to DEs, RNA Control Devices, and/or side-CARs combined with Chimeric Antigen Receptors to make small molecule actuatable CAR polypeptides. The present invention also relates to DE-CARs, Smart CARs (Smart=small molecule actuatable RNA trigger), Smart-DE-CARs, and/or Side-CARs for use in the treatment of disease.
Abstract: The present invention relates generally to the field of making novel antigen binding domains against infectious diseases. The present invention also relates to novel CARs that utilize the novel antigen binding domains as an extracellular element. The present invention also relates to use of the novel antigen binding domains as therapeutic agents.
Abstract: The present invention relates generally to the field of RNA Control Devices and/or destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) in eukaryotic cells. The present invention also relates to split CARs (Side-CARs) in eukaryotic cells. More specifically, the present invention relates to DEs, RNA Control Devices, and/or side-CARs combined with Chimeric Antigen Receptors to make small molecule actuatable CAR polypeptides. The present invention also relates to DE-CARs, Smart CARs (Smart=small molecule actuatable RNA trigger), Smart-DE-CARs, and/or Side-CARs for use in the treatment of disease.
Abstract: In an aspect, the present invention relates generally to the field of treating disease with CAR devices, Smart CAR devices, DE CAR devices, and/or Smart-DE CAR devices. The present invention also relates generally to the genetic modification of cytotoxic T-lymphocytes to reduce target cell killing by apoptosis and/or increase production of lytic proteins at desired times. In an aspect, the invention relates to the use of these genetically modified T-lymphocytes and/or natural killer cells with CAR devices, Smart CAR devices, DE CAR devices, and/or Smart-DE CAR devices to enhance the immune response against a disease.
Abstract: The present invention relates generally to the field of RNA Control Devices and/or destabilizing elements (DE) combined with Chimeric Antigen Receptors (CARs) in eukaryotic cells. The present invention also relates to split CARs (Side-CARs) in eukaryotic cells. More specifically, the present invention relates to DEs, RNA Control Devices, and/or side-CARs combined with Chimeric Antigen Receptors to make small molecule actuatable CAR polypeptides. The present invention also relates to DE-CARs, Smart CARs (Smart=small molecule actuatable RNA trigger), Smart-DE-CARs, and/or Side-CARs for use in the treatment of disease.