Patents Assigned to CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
  • Patent number: 10975694
    Abstract: A mine field layout method suitable for fluidized mining of coal resources is provided. A main shaft and an air shaft are provided in the mine field, the bottom of the main shaft is located in the shallow horizontal coal seam zone, and the bottom of the air shaft is located in the deep horizontal coal seam zone. The horizontal main roadways are arranged at two boundaries along the strike of the coal seam, and inclined main roadways are arranged at two boundaries along the dip direction of the coal seam. Connecting roadways are located inside the mine field and are in communication with the horizontal main roadways. In the coal mining stage, the coal resources can be converted into the fluidized energy product and/or electricity by an unmanned automatic mining machine.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: April 13, 2021
    Assignees: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING, SHENZHEN UNIVERSITY
    Inventors: Yang Ju, Heping Xie, Yong Zhang, Yan Zhu, Feng Gao, Xiaodong Nie, Changbing Wan, Jinxin Song, Chang Lu, Hongbin Liu, Zhangyu Ren
  • Publication number: 20210003008
    Abstract: A mine field layout method suitable for fluidized mining of coal resources is provided. A main shaft and an air shaft are provided in the mine field, the bottom of the main shaft is located in the shallow horizontal coal seam zone, and the bottom of the air shaft is located in the deep horizontal coal seam zone. The horizontal main roadways are arranged at two boundaries along the strike of the coal seam, and inclined main roadways are arranged at two boundaries along the dip direction of the coal seam. Connecting roadways are located inside the mine field and are in communication with the horizontal main roadways. In the coal mining stage, the coal resources can be converted into the fluidized energy product and/or electricity by an unmanned automatic mining machine.
    Type: Application
    Filed: March 23, 2018
    Publication date: January 7, 2021
    Applicants: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING, SHENZHEN UNIVERSITY
    Inventors: Yang JU, Heping XIE, Yong ZHANG, Yan ZHU, Feng GAO, Xiaodong NIE, Changbing WAN, Jinxin SONG, Chang LU, Hongbin LIU, Zhangyu REN
  • Publication number: 20200394767
    Abstract: The present invention proposes a method for rapidly dehazing an underground pipeline image based on dark channel prior (DCP). The method includes: preprocessing a hazy underground pipeline image to obtain a dark channel image corresponding to the hazy image; average-filtering the obtained dark channel image to estimate an image transmittance; compensating an offset value for an average filtering result to obtain a rough estimate of the transmittance; using a pixel value of the original image and an average-filtered image to estimate a global atmospheric light value; and using a physical restoration model to restore a dehazed image. The method of the present invention realizes the timeliness of the algorithm while ensuring the dehazing effect, and is suitable for scientific fields such as video monitoring of underground pipeline environment and identification of underground pipeline defects.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 17, 2020
    Applicant: China University of Mining & Technology, Beijing
    Inventors: Ce Li, Feng Yang, Tan He
  • Patent number: 10731962
    Abstract: A transparent constraint apparatus for the normal deformation of a planar model, including rigid transparent retainer plates, a planar model, and magnetic force components. The magnetic force components are provided at edge positions of the rigid transparent retainer plates; the normal direction of the planar model is parallel to the normal direction of the two rigid transparent retainer plates, and said two retainer plates are symmetrically arranged relative to the plane of symmetry of the planar model; the magnetic force components are symmetrically arranged relative to the plane of symmetry of the planar model, mutually symmetrical magnetic force components producing mutually attractive magnetic force. The transparent constraint apparatus solves the problem of constraining the normal deformation of a planar model under planar-strain conditions during testing.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 4, 2020
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Chang Lu, Peng Liu, Zhangyu Ren, Hongbin Liu, Xiaolan Li, Changbing Wan, Xiaodong Nie, Yating Wang
  • Publication number: 20200240270
    Abstract: The present invention discloses an I-shaped water-retaining dam for an underground reservoir in a coal mine. The I-shaped water-retaining dam is located between coal pillar dams to isolate an underground reservoir from a corresponding coal roadway. The I-shaped water-retaining dam includes an upper flange plate, a web plate, and a lower flange plate from top to bottom, where a vertical face of a dam body is of an I shape; the upper flange plate extends into a roadway roof; two ends of the web plate are embedded into the coal pillar dams; and the lower flange plate extends into a floor. The I-shaped water-retaining dam is located in an underground coal roadway, and bears complex surrounding rock stress. The present invention effectively overcomes water seepage of a weak part at an upper part of a conventional I-shaped water-retaining dam.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 30, 2020
    Applicant: China University of Mining and Technology (Beijing)
    Inventors: Renliang Shan, Haochen Zhang, Xiangsong Kong
  • Patent number: 10648894
    Abstract: A method for measuring the dynamic stress field evolution law of a complex heterogeneous structure, comprising: preparing a transparent photosensitive resin model of a complex heterogeneous structure by means of three-dimensional (3D) printing technology to serve as a test piece (S101); placing the test piece in a light path of a circularly polarized light dark field, performing continuous stress loading on the test piece, and recording images (S102); acquiring a plurality of continuously changing full-field stress fringe grayscale images according to videos generated by the image recording (S103); then acquiring grayscale value change sequences of pixel points at each position in the images (S104); and finally, calculating full-field fringe orders under continuous loading conditions according to the relation between the grayscale values and the fringe orders so as to calculate full-field stress values under the continuous loading conditions (S105).
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 12, 2020
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Zhangyu Ren, Li Wang, Lingtao Mao, Hongbin Liu
  • Patent number: 10564080
    Abstract: A method for measuring a stress field evolution during a CO2 fracturing process is provided, which is adopted to not only transparently display the spatial distribution and propagation morphology of internal fracturing fracture of a three-dimensional physical models, but also obtain internal three-dimensional stress phase diagram in a fracture propagation process by integration of a CT scanning, a digital reconstruction, a 3D printing, a CO2 fracturing experiment, a stress freezing and a photoelastic measurement techniques, thereby realizing transparent display and quantitative characterization of the three-dimensional stress field and its evolution law of a solid matter in the CO2 fracturing process.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 18, 2020
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Peng Liu, Hongbin Liu, Yongming Yang
  • Publication number: 20190368988
    Abstract: A method for measuring the dynamic stress field evolution law of a complex heterogeneous structure, comprising: preparing a transparent photosensitive resin model of a complex heterogeneous structure by means of three-dimensional (3D) printing technology to serve as a test piece (S101); placing the test piece in a light path of a circularly polarized light dark field, performing continuous stress loading on the test piece, and recording images (S102); acquiring a plurality of continuously changing full-field stress fringe grayscale images according to videos generated by the image recording (S103); then acquiring grayscale value change sequences of pixel points at each position in the images (S104); and finally, calculating full-field fringe orders under continuous loading conditions according to the relation between the grayscale values and the fringe orders so as to calculate full-field stress values under the continuous loading conditions (S105).
    Type: Application
    Filed: March 23, 2018
    Publication date: December 5, 2019
    Applicant: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang JU, Zhangyu REN, Li WANG, Lingtao MAO, Hongbin LIU
  • Publication number: 20190360904
    Abstract: A method for measuring a stress field evolution during a CO2 fracturing process is provided, which is adopted to not only transparently display the spatial distribution and propagation morphology of internal fracturing fracture of a three-dimensional physical models, but also obtain internal three-dimensional stress phase diagram in a fracture propagation process by integration of a CT scanning, a digital reconstruction, a 3D printing, a CO2 fracturing experiment, a stress freezing and a photoelastic measurement techniques, thereby realizing transparent display and quantitative characterization of the three-dimensional stress field and its evolution law of a solid matter in the CO2 fracturing process.
    Type: Application
    Filed: April 17, 2018
    Publication date: November 28, 2019
    Applicant: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang JU, Peng LIU, Hongbin LIU, Yongming YANG
  • Patent number: 10408721
    Abstract: A device for stress-freezing experiments during fracturing process according to the present application, in which heating and cooling treatment on a specimen under corresponding temperature control according to a preset temperature gradient and a photosensitive curve is performed by a temperature control system, to realize stress-freezing of the specimen; a pressure is applied to a specimen by a true triaxial servo loading system; and corresponding fracturing experiments are performed to the specimen by a fracturing liquid pumping system having an output end arranged in a thermo-controlled oven.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 10, 2019
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Peng Liu, Hongbin Liu, Yongming Yang
  • Publication number: 20190226958
    Abstract: A device for stress-freezing experiments during fracturing process according to the present application, in which heating and cooling treatment on a specimen under corresponding temperature control according to a preset temperature gradient and a photosensitive curve is performed by a temperature control system, to realize stress-freezing of the specimen; a pressure is applied to a specimen by a true triaxial servo loading system; and corresponding fracturing experiments are performed to the specimen by a fracturing liquid pumping system having an output end arranged in a thermo-controlled oven.
    Type: Application
    Filed: December 7, 2017
    Publication date: July 25, 2019
    Applicant: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang JU, Peng LIU, Hongbin LIU, Yongming YANG
  • Patent number: 10302788
    Abstract: A coal collapse column identification method and related apparatus that includes acquiring seismic shot gather data in a target region and a seismic wave migration velocity file; calculating a diffraction wave travel time of each piece of single-shot data at different imaging points according to the data; performing Mahalanobis distance calculation processing on each single-shot data and the diffraction wave travel time thereof to acquire a diffraction wave amplitude value sample point of each piece of single-shot data; imaging respectively on a diffraction wave of each piece of single-shot data; and superposing imaging processing results of all the single-shot data corresponding to the seismic shot gather data to obtain a diffraction wave imaging result of the seismic shot gather data so as to facilitate coal collapse column identification according to the diffraction wave imaging result. A diffraction wave corresponding to seismic shot gather data is extracted through a Mahalanobis distance.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 28, 2019
    Assignee: CHINA UNIVERSITY OF MINING & TECHNOLOGY, BEIJING
    Inventors: Jingtao Zhao, Suping Peng, Wenfeng Du, Xiaoting Li
  • Patent number: 10302758
    Abstract: A method and a device for detecting a discontinuous body with ground penetrating radar, comprising acquiring a ground penetrating radar signal of a predefined underground space, where the ground penetrating radar signal carries discontinuous information about an electrical parameter of the underground space; determining, from multiple preset dip angles, a target dip angle of the ground penetrating radar signal with respect to each of multiple channels to be scanned, by a target scanning algorithm; separating the ground penetrating radar signal according to the target dip angle, to obtain a scattered wave; performing velocity continuation analysis on the scattered wave, to obtain a focusing velocity of the scattered wave; and imaging the scattered wave according to the scattered wave and the focusing velocity, to obtain an imaging result, where the imaging result is used to determine distribution information of the discontinuous body in the predefined underground space.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 28, 2019
    Assignee: China University of Mining & Technology, Beijing
    Inventors: Suping Peng, Jingtao Zhao, Xianlei Xu, Wenfeng Du, Xiaoqin Cui
  • Patent number: 10281603
    Abstract: The present disclosure discloses a fracture AVO inversion method for a fractured medium, wherein, said method includes: acquiring seismic data from the fractured medium; obtaining a reflection coefficient of the fractured medium, by an AVO inversion for the seismic data based on a newly-built equation. The present disclosure also provides a fracture AVO inversion apparatus and device for a fractured medium. The present invention can flexibly and accurately obtain properties of a fractured medium with impedance contrast (rock properties of the host media plus properties of thee fracture).
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 7, 2019
    Assignees: BEIJING IVY TECHNOLOGY CO. LTD., CHINA UNIVERSITY OF MINING AND TECHNOLOGY (BEIJING)
    Inventors: Xiaoqin Cui, Suping Peng, Wenfeng Du
  • Publication number: 20190086577
    Abstract: Disclosed is a three-dimensional digital virtual imaging device for stratigraphic texture of borehole core, wherein the probe depth counting pulley is mounted on the lifting wire frame, the output shaft of the motor is configured to drive the reel to rotate, and one end of the cable is connected to the cable transfer node of the retractable reel, the signal input end of the borehole imaging trajectory measuring probe of the on-site imaging host is electrically connected to one end of the cable through the cable transfer node of the retractable reel, the cable is wound on the retractable reel, a retractable line is controlled by the retractable reel, the cable is extended and retracted on the probe depth counting pulley, the probe depth counting pulley records the length of the retractable line of the cable, the depth feedback signal output end of the depth counting pulley is connected to the depth feedback signal input end of the on-site imaging host, the motor control signal output end of the on-site imaging
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Applicants: WUHAN CHANGSHENG MINE SECURITY TECHNOLOGY LIMITED, CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Qiang WU, Liu LIU, Yifan ZENG, Fengjuan TAO, Chunsheng LIU
  • Publication number: 20190086574
    Abstract: Disclosed is a three-dimensional directional transient electromagnetic advanced detection device, wherein the CPU and the bus communication end of the transient electromagnetic transmitting module are both connected to the system bus, the signal output end of the transient electromagnetic transmitting module is connected to the transient electromagnetic transmitting coil outside the borehole to be detected, the signal input end of the electromagnetic signal receiving module is connected to the signal output ends of the three-dimensional magnetic field sensor and the one-dimensional Z-directional electric field sensor, the signal output end of the electromagnetic signal receiving module is connected to the electromagnetic signal input end of the SCM, the communication end of the first memory is connected to the data storage end of the SCM, the communication end of the three-dimensional electronic compass is connected to the compass signal communication end of the SCM, the host data communication of the SCM is
    Type: Application
    Filed: September 17, 2018
    Publication date: March 21, 2019
    Applicants: WUHAN CHANGSHENG MINE SECURITY TECHNOLOGY LIMITED, CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Qiang WU, Liu LIU, Yifan ZENG, Fengjuan TAO, Chunsheng LIU
  • Publication number: 20180246241
    Abstract: A coal collapse column identification method and related apparatus that includes acquiring seismic shot gather data in a target region and a seismic wave migration velocity file; calculating a diffraction wave travel time of each piece of single-shot data at different imaging points according to the data; performing Mahalanobis distance calculation processing on each single-shot data and the diffraction wave travel time thereof to acquire a diffraction wave amplitude value sample point of each piece of single-shot data; imaging respectively on a diffraction wave of each piece of single-shot data; and superposing imaging processing results of all the single-shot data corresponding to the seismic shot gather data to obtain a diffraction wave imaging result of the seismic shot gather data so as to facilitate coal collapse column identification according to the diffraction wave imaging result. A diffraction wave corresponding to seismic shot gather data is extracted through a Mahalanobis distance.
    Type: Application
    Filed: December 29, 2016
    Publication date: August 30, 2018
    Applicant: CHINA UNIVERSITY OF MINING & TECHNOLOGY, BEIJING
    Inventors: Jingtao Zhao, Suping Peng, Wenfeng Du, Xiaoting Li
  • Patent number: 10053985
    Abstract: The invention discloses a real-time water-level monitoring system for a dumping site of an open-pit coal mine. The dumping site of the open-pit coal mine comprises an aboveground part and an underground part, where the aboveground part is a stacking site (1) located above an original ground surface. The real-time water-level monitoring system for a dumping site of an open-pit coal mine comprises a first measuring well (2) and a second measuring well (3), where the first measuring well (2) is arranged vertically in the center of the stacking site (1), and the second measuring well (3) includes a vertical section (301), a horizontal section (302), and a free section (303) connected in sequence; and a first water-impermeable layer (4), a second water-impermeable layer (5), and a third water-impermeable layer (6) are provided internally in the stacking site (1).
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: August 21, 2018
    Assignee: CHINA UNIVERSITY OF MINING & TECHNOLOGY-BEIJING
    Inventors: Suping Peng, Feisheng Feng, Pingjie Fu, Wenfeng Du, Pan Wang
  • Patent number: 9897585
    Abstract: A geomechanical fluid-solid coupling testing device for water inrush from coal mine collapse column, which has a testing bed and a collapse column simulating device, wherein the testing bed has a box type structure with an opening at its top and is provided therein with multiple layers of similar materials in which a tunnel or a mining face can be dug out; and the collapse column simulating device comprises a plexiglass barrel with openings at both its top and bottom, the plexiglass barrel is provided at its top opening with a plexiglass lifting device and a hard plastic baffle, and the plexiglass lifting device is provided with a lifting level which is connected with a lifting rope.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: February 20, 2018
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Qiang Wu, Lei Niu, Shucai Li, Shouqiang Liu, Yifan Zeng
  • Patent number: 9891178
    Abstract: An industrial CT scanning test system. The test system includes a test base, a multi-axis motion swivel table supported on the test base, a ray generator, an image acquisition device, and a fluid pressure loading device, and further includes a control device. The fluid pressure loading device includes at least one loading cylinder, and in case of performing a scanning experiment, the at least one loading cylinder is placed on a sample stage of the multi-axis motion swivel table together with a sample, and real-time loading of loads in different directions on the sample is performed according to test requirements.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: February 13, 2018
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Jianqiang Wang, Ruidong Peng, Lingtao Mao, Hongbin Liu