Patents Assigned to Clean Diesel Technologies, Inc.
  • Publication number: 20180290128
    Abstract: Zero-PGM (ZPGM) catalyst materials including pseudo-brookite compositions for use in diesel oxidation catalyst (DOC) applications are disclosed. The disclosed doped pseudo-brookite compositions include A-site partially doped pseudo-brookite compositions, such as, Sr-doped and Ce-doped pseudo-brookite compositions, as well as B-site partially doped pseudo-brookite compositions, such as, Fe-doped, Co-doped Ni-doped, and Ti-doped pseudo-brookite compositions. The disclosed doped pseudo-brookite compositions, including calcination at various temperatures, are subjected to a DOC standard light-off (LO) test methodology to assess/verify catalyst activity as well as to determine the effect of the use of a dopant in an A-site cation or a B-site cation within a pseudo-brookite composition.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 11, 2018
    Applicant: CDTI Advanced Materials, Inc. (formerly Clean Diesel Technologies, Inc.)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9861964
    Abstract: The present disclosure relates to zero-PGM (ZPGM) catalysts including variations of Nickel-doped Copper-Manganese spinel for improved catalyst performance at the stoichiometric condition for use within three-way catalyst (TWC) applications. The ZPGM catalyst material compositions within the aforementioned ZPGM catalysts are expressed with general formulas of Cu1-XNiXMn2O4 (A-site substitution) and Cu1Mn2-XNiXO4 (B-site substitution). The ZPGM catalysts are subjected to a TWC isothermal steady-state sweep test to assess the catalytic performance (e.g., NO conversion). Test results indicate the ZPGM catalysts exhibit higher NO conversions, at stoichiometric condition and lean conditions, when Ni substituted the B-site cation of the Cu—Mn spinel as compared to Ni substituted the A-site cation of the Cu—Mn spinel. Additionally, NO conversions of the ZPGM catalysts are significantly affected, at the stoichiometric condition, by the molar ratio of the Ni dopant within the A or B-site cation of the Cu—Mn spinel.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: January 9, 2018
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9771534
    Abstract: Disclosed here are systems and methods including one or more FBCs and one or more suitable aftertreatment devices, including DOCs, DPFs, and suitable combinations thereof. The systems and methods disclosed may include selecting a suitable FBC for use with a fuel with a specified sulfur content. Systems and methods disclosed here may also include using one or more ECUs to control one or more FBC dosing/metering devices to supply FBCs from one or more FBC reservoirs in the presence of a specified event.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: September 26, 2017
    Assignee: Clean Diesel Technologies, Inc. (CDTi)
    Inventors: Barry Sprague, Steve Beal
  • Patent number: 9731279
    Abstract: Effect of the type of ZPGM material composition to improve thermal stability of ZPGM catalyst systems for TWC application is disclosed. ZPGM catalyst system samples are prepared and configured with washcoat on ceramic substrate, overcoat including doped Zirconia support oxide, and impregnation layer including either Cu1Mn2O4 spinel or Cu1Co1Mn1O4 spinel. Testing of ZPGM catalyst samples including variations of aging temperatures and different impregnation layer materials are developed under isothermal steady state sweep test condition for ZPGM catalyst systems to evaluate performance especially NOx conversions and level of thermal stability. As a result disclosed ZPGM catalyst systems with most suitable spinel that includes Cu1Co1Mn1O4 in impregnation layer exhibit high NOx conversion and significant improved thermal stability compare to Cu1Mn2O4 spinel, which is suitable for under floor and close coupled TWC application.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: August 15, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Anke Elizabeth Abken, Stephen J. Golden
  • Publication number: 20170095794
    Abstract: Zero-PGM (ZPGM) catalyst materials including pseudo-brookite compositions for use in diesel oxidation catalyst (DOC) applications are disclosed. The disclosed doped pseudo-brookite compositions include A-site partially doped pseudo-brookite compositions, such as, Sr-doped and Ce-doped pseudo-brookite compositions, as well as B-site partially doped pseudo-brookite compositions, such as, Fe-doped, Co-doped, Ni-doped, and Ti-doped pseudo-brookite compositions. The disclosed doped pseudo-brookite compositions, including calcination at various temperatures, are subjected to a DOC standard light-off (LO) test methodology to assess/verify catalyst activity as well as to determine the effect of the use of a dopant in an A-site cation or a B-site cation within a pseudo-brookite composition.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20170095801
    Abstract: The present disclosure describes ZPGM catalyst material compositions having significantly high oxygen storage capacity for a plurality of TWC applications. The disclosed ZPGM catalyst material compositions include a Cu—Mn spinel deposited on doped Zirconia support oxide. The disclosed ZPGM catalyst material compositions exhibit significant high OSC stability properties after fuel cut aging. The improved thermal stability and OSC properties of the disclosed ZPGM catalyst material compositions are determined by performing a standard isothermal oscillating OSC tests. Fresh and aged ZPGM catalyst material compositions are employed within the standard isothermal oscillating OSC test, over multiple reducing/oxidizing cycles at a temperature of about 575° C.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20170095802
    Abstract: The present disclosure describes bulk powder Zero-PGM material compositions including a CuMn2O4 spinel structure supported on doped zirconia support oxides powders, including Ba, Sr, and Ti at different dopant loadings produced by different conventional synthetic methods. BET-surface area and XRD analysis are performed for a plurality of doped zirconia support oxides to compare the thermal stability, before and after deposition of Cu—Mn spinel. Additionally, bulk powder ZPGM catalyst compositions are subjected to a steady-state isothermal sweep test to determine NO conversion capabilities. The selected support oxide material compositions are capable of providing increased surface areas for improved thermal stability leading to a more effective utilization of ZPGM catalyst materials with enhanced NO conversion and improved thermal stability for TWC applications.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20170095803
    Abstract: Sulfur-resistant synergized platinum group metals (SPGM) catalysts with significant oxidation capabilities are disclosed. Catalytic layers of SPGM catalyst samples are produced using conventional synthesis techniques to build a washcoat layer completely or substantially free of PGM material. The SPGM catalyst includes a washcoat layer comprising YMnO3 perovskite and an overcoat layer including a Pt composition deposited on a plurality of support oxides with total PGM loading of about 5 g/ft3. Resistance to sulfur poisoning and catalytic stability is observed under 1.3 gS/L condition to assess the influence that selected support oxides have on the DOC performance of the SPGM catalysts. The results indicate SPGM catalysts produced to include a layer of low amount of PGM catalyst material deposited on a plurality of support oxides added to a layer of ZPGM catalyst material are capable of providing significant improvements in sulfur resistance of SPGM catalyst systems.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20170095800
    Abstract: Variations of ZPGM catalyst material compositions including doped Cu—Mn spinel supported on doped zirconia support oxide are disclosed. The disclosed ZPGM catalyst compositions include a small substitution of Ni within the A-site or B-site cation of a Cu—Mn spinel supported on doped zirconia support oxide, and produced by the incipient wetness (IW) methodology. Bulk powder ZPGM catalyst compositions are subjected to XRD analyses to determine the spinel phase formation and stability. Additionally, bulk powder ZPGM catalyst compositions are subjected to a steady-state isothermal sweep test to determine NO, CO, and THC conversion. The ZPGM catalyst material compositions including Ni-doped Cu—Mn spinel supported on doped zirconia support oxide exhibit improved levels in NO and CO conversions, which can be employed in ZPGM catalysts for a plurality of TWC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in TWC products.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 6, 2017
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9610570
    Abstract: Variations of coating processes of Cu—Mn—Fe ZPGM catalyst materials for TWC applications are disclosed. The disclosed coating processes for Cu—Mn—Fe spinel materials are enabled in the preparation ZPGM catalyst samples according to a plurality of catalyst configurations, which may include an alumina only washcoat layer coated on a suitable ceramic substrate, and an overcoat layer with or without an impregnation layer, including Cu—Mn—Fe spinel and doped Zirconia support oxide, prepared according to variations of disclosed coating processes. Activity measurements are considered under variety of lean condition to rich condition to analyze the influence of disclosed coating processes on TWC performance of ZPGM catalysts for a plurality of TWC applications. Different coating processes may substantially increase thermal stability and TWC activity, providing improved levels of NOx conversion that may lead to cost effective manufacturing solutions for ZPGM-TWC systems.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: April 4, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9604175
    Abstract: The present disclosure describes zoned three way catalyst (TWC) systems including Rhodium-iron overcoat layers and Nb—Zr—Al Oxide overcoat layers. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. In catalyst systems disclosed herein, closed-coupled catalysts include a first catalyst zone with an overcoat layer formed using a slurry that includes an oxide mixture and an Oxygen Storage Material (OSM). In catalyst systems disclosed herein, oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, catalyst systems disclosed herein include a second catalyst zone with an overcoat layer formed to include a rhodium-iron catalyst. Yet further, catalyst systems disclosed herein include impregnation layers that include one or more of Palladium, Barium, Cerium, Neodymium, and Rhodium.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 28, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Randal L. Hatfield, Zahra Nazarpoor, Johnny T. Ngo, Edward J. Lee, Stephen J. Golden
  • Patent number: 9579604
    Abstract: Close-coupled catalysts (CCC) for TWC applications are disclosed. The novel CCCs are implemented using light-weighted ceramic substrates in which a thin coating employing a low loading of Iron (Fe)-activated Rhodium (Rh) material composition, with Iron loadings and an OSM of Ceria-Zirconia, are deposited onto the substrates. Different CCC samples are produced to determine and/or verify improved light-off (LO) and NOX conversion of the CCCs. Other CCC samples produced are a CCC including a standard (non-activated) Rh thin coating and a heavily loaded CCC with a single coating of Pd/Rh material composition. The CCC samples are aged under dyno-aging using the multi-mode aging cycle and their performance tested using a car engine with ports on the exhaust to measure the emissions, according to the testing protocol in the Environmental Protection Agency Federal Test Procedure 75. During testing, the thin coatings of Fe-activated Rh exhibit improved light-off and NOx conversion efficiency.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: February 28, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Randal L. Hatfield, Stephen J. Golden, Johnny T. Ngo
  • Patent number: 9555400
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat that includes stoichiometric Cu—Mn spinel structure, supported on doped ZrO2, and an overcoat that includes PGM, such as platinum (Pt) supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under lean and also rich operating conditions. Additionally, disclosed SPGM catalyst system exhibits enhanced catalytic activity for carbon monoxide conversion. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalytic activity compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst, such as Pt, and Cu—Mn spinel within disclosed SPGM catalyst system, which help in activity and thermal stability of disclosed SPGM catalyst.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: January 31, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9545626
    Abstract: The present disclosure refers to a plurality of process employed for optimization of Zero-PGM washcoat and overcoat loadings on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the total washcoat and overcoat loadings of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum total washcoat and overcoat loadings for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 17, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 9517449
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 13, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 9511353
    Abstract: The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventor: Zahra Nazarpoor
  • Patent number: 9511350
    Abstract: Diesel oxidation ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide, hydrocarbons and nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an impregnation layer. The washcoat may include at least one carrier material oxides. The impregnation layer may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9511358
    Abstract: Spinels having a general formula of AB2O4, where A and B are a transition metal but not the same transition metal are disclosed. Spinel and spinel compositions of the application are useful in various applications and methods as further described.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9511355
    Abstract: Synergies resulting from combinations of catalyst systems including Copper-Manganese material compositions and PGM catalysts are disclosed. Variations of catalyst system configurations are tested to determine most effective material composition, formulation, and configuration for an optimal synergized PGM (SPGM) catalyst system. The synergistic effect of the selected SPGM catalyst system is determined under steady state and oscillating test conditions, from which the optimal NO/CO cross over R-value indicates enhanced catalytic behavior of the selected SPGM catalyst system as compared with current PGM catalysts for TWC applications. According to principles in the present disclosure, application of Pd on alumina-based support as overcoat and Cu—Mn spinel structure supported on Nb2O5—ZrO2 as washcoat on suitable ceramic substrate, produce higher catalytic activity, efficiency, and better performance in TWC condition, especially under lean condition, than commercial PGM catalysts.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160346765
    Abstract: Sulfur-resistant synergized platinum group metals (SPGM) catalysts with significant oxidation capabilities are disclosed. Catalytic layers of SPGM catalyst samples are prepared using conventional synthesis techniques to build a washcoat layer completely or substantially free of PGM material. The SPGM catalyst includes a washcoat layer comprising YMn2O5 (pseudobrookite) and an overcoat layer including a Pt/Pd composition with total PGM loading of at or below 5.0 g/ft3. Resistance to sulfur poisoning and catalytic stability is observed under 5.2 gS/L condition to assess significant improvements in NO oxidation, and HC and CO conversions.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 1, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden