Patents Assigned to Corning Incorporated
  • Patent number: 10627558
    Abstract: A light-diffusing optical fiber that provides a symmetric intensity distribution of forward and backward scattered light is described. The fiber includes a secondary coating that contains scattering centers. Control of the thickness of the secondary coating and concentration of scattering centers provides control over the distribution of scattered intensity. More symmetric distributions of scattered light intensity are realized by increasing the thickness of the secondary coating and/or the concentration of scattering centers in the secondary coating. Representative scattering centers include oxide nanoparticles.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 21, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kevin Wallace Bennett, Trista Nicole Hesch, Stephan Lvovich Logunov, Manuela Ocampo
  • Patent number: 10629900
    Abstract: A porous silicon composition, a porous alloy composition, or a porous silicon containing cermet composition, as defined herein. A method of making: the porous silicon composition; the porous alloy composition, or the porous silicon containing cermet composition, as defined herein. Also disclosed is an electrode, and an energy storage device incorporating the electrode and at least one of the disclosed compositions, as defined herein.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 21, 2020
    Assignee: Corning Incorporated
    Inventors: Indrajit Dutta, Brian Alan Kent, Patrick David Tepesch, Shawn Michael O'Malley, Randall Eugene Youngman
  • Patent number: 10626362
    Abstract: A closure assembly for a cell culture apparatus includes a port and a snap cap. The port has an annular sidewall defining an opening in communication with a cell culture chamber of a cell culture apparatus. The sidewall has (i) external threads for cooperating with internal threads of a twist cap and (ii) an annularly protruding snap cap engagement feature. The snap cap has a top and an annular sidewall extending from the top. The sidewall of the snap cap has an inwardly annularly projecting element configured to engage with the annularly protruding snap cap engagement feature of the port such that, when fully engaged, the snap cap is not readily removed from the port by unaided human force.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: April 21, 2020
    Assignee: Corning Incorporated
    Inventors: Adam Joel Bear, Heidi Marie Brown, Matthew Donald Mitchell, James M Philippe, Paul Kevin Seeto
  • Patent number: 10626042
    Abstract: A fining agent for reducing the concentration of seeds or bubbles in a silicate glass. The fining agent includes at least one inorganic compound, such as a hydrate or a hydroxide that acts as a source of water. In one embodiment, the fining agent further includes at least one multivalent metal oxide and, optionally, an oxidizer. A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3 is also provided. Methods of reducing the seed concentration of a silicate glass, and a method of making a silicate glass having a seed concentration of less than about 1 seed/cm3 are also described.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: April 21, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Patent number: 10622589
    Abstract: A process includes providing a base substrate and disposing a precursor on the base substrate. The precursor includes powdered particles of a first material and an organic binder. The process includes photo-thermally treating the precursor to form a light extraction layer. The photo-thermal treatment includes exposing the precursor to a flash lamp that is energized in pulses. The process further includes disposing an organic light emitting diode adjacent to the light extraction layer.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 14, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kuan-Ting Kuo, Jen-Chieh Lin, Lu Zhang
  • Patent number: 10618210
    Abstract: The disclosure relates to embodiments of an apparatus for producing polymer composite panels. The polymer composite panels include one or more layers of a polymeric matrix having discontinuous fibers embedded therein. The apparatus has a frame, a deposition bed, and a deposition head configured to move relative to the frame and over the deposition bed. The deposition head includes at least one extruder and a nozzle array. The extruder is configured to force the polymeric matrix and discontinuous fibers through the nozzle array and onto the deposition bed. The deposition head is configured to deposit an entire layer of a polymer composite panel on the deposition bed in a single pass so that the discontinuous fibers are oriented in the direction of the single pass. The disclosure also relates to embodiments of a method of forming a polymer composite panel and to embodiments of a polymer composite panel.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Patrick W Albor, Roy Joseph Bourcier, Eric Hamilton Starns
  • Patent number: 10619926
    Abstract: A method for processing material includes sintering a portion of a sheet of material at a location on the sheet, moving the sintering location along the sheet of material at a first rate, and pulling the sintered material away from the sintering location at a second rate that is greater than the first rate.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Steven Edward DeMartino, Daniel Warren Hawtof, Archit Lal, Xinghua Li, Daniel L Maurey, Kevin William Uhlig
  • Patent number: 10618839
    Abstract: A coated article including a substrate and a low emissivity coating. The coated article includes increased TUV and/or actinic transmissivity for use in windows and similar applications.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 14, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Karl William Koch, III
  • Patent number: 10620344
    Abstract: Embodiments of articles including a low-contrast anti-reflection coating are disclosed. The coated surface of such articles exhibits a reduced difference in reflectance between a pristine state and when a surface defect is present. In one or more embodiments, the coated surface of such articles exhibits a first average reflectance in the range from about 0.6% to about 6.0% in a pristine condition and a second average reflectance of about 8% or less after removal of a surface thickness of the anti-reflection coating. In other embodiments, the coated substrate exhibits a second average reflectance of about 10% or less, when the coated surface comprises a contaminant. In some embodiments, the coated substrate exhibits a first color coordinate (a*1, b*1) in a pristine condition and a second color coordinate (a*2, b*2) after the presence of a surface defect such that ?a*b* is about 6 or less.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, Charles Andrew Paulson
  • Patent number: 10622581
    Abstract: A foldable electronic device module includes a glass cover element having a thickness from about 25 ?m to about 200 ?m, an elastic modulus from about 20 GPa to about 140 GPa and a puncture resistance of at least 1.5 kgf. The module further includes a stack with a thickness between about 100 ?m and about 600 ?m; and a first adhesive joining the stack to the cover element with a shear modulus between about 1 MPa and about 1 GPa. The stack further includes a panel, an electronic device, and a stack element affixed to the panel with a stack adhesive. Further, the device module is characterized by a tangential stress at a primary surface of the cover element of no greater than about 1000 MPa in tension upon bending the module to a radius from about 20 mm to about 2 mm.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Guangli Hu, Dhananjay Joshi, Eunyoung Park, Yousef Kayed Qaroush
  • Patent number: 10611674
    Abstract: Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Jonathan David Pesansky, Chandan Kumar Saha, Trevor E Wilantewicz
  • Patent number: 10611176
    Abstract: A method of printing a decoration on a substrate include inkjet printing a plurality of inks to forma layer having a predetermined pattern on a surface of the substrate, wherein each of the inks includes a solvent and has a different color; heating the substrate to evaporate at least a portion of the solvent in each of the plurality of inks; and thermally curing the layer after evaporating at least the portion of the solvent in each of the plurality of inks to form the decoration. The substrate is heated to a temperature that evaporates at least the portion of the solvent in each of the plurality of inks without fully curing the plurality of inks. A boiling point of the solvent in each of the plurality of inks is within 10° C. of each other.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Fang-Fang Wang, Qing Ya Wang, Yongsheng Yan
  • Patent number: 10611681
    Abstract: A strengthened glass having a stress profile that differs from error-function and parabolic profiles. Stress relaxation and thermal annealing/diffusion effects, which occur at longer ion exchange and/or anneal times increase the depth of compression of the surface layer. A method of achieving these effects is also provided.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Pascale Oram, Rostislav Vatchev Roussev, Vitor Marino Schneider, Charlene Marie Smith, Zhongzhi Tang
  • Patent number: 10611051
    Abstract: A system for delivering and applying a flowable mixture to an article (311-313) is disclosed. The system includes a mixture delivery system (200) and a skinning system (300). The mixture delivery system (200) includes a mixer (220) configured to mix a dry material and a fluid to produce the flowable mixture, and a pump (235) configured to pump the flowable mixture to a delivery line. The skinning system (300) receives the flowable mixture from the mixture delivery system (200) through the delivery line. The skinning system (300) includes a skinning pipe (310) configured to apply the flowable mixture to the article (311-313) and a manifold (305) that supports the skinning pipe (310). The skinning system (300) also includes an article feeding mechanism (315) configured to push the article (311-313) into the skinning pipe (310). The skinning system (300) includes a transfer system (320) configured to hold the article (311-313) and move the article (311-313) out of the skinning pipe (310).
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Brian Michael Adams, Timothy Eugene Antesberger, Richard Dominic Bomba, Marc Jason Cassada, Joseph Henry Citriniti, John Joseph Costello, III, Scott Winfield Deming, Parasuram Padmanabhan Harihara, Michael Joseph Joyce, Christopher Lane Kerr, Harry Robinson, Jr., Brian Christopher Sheehan, Dell Joseph St. Julien, Kevin Lee Wasson, James Arthur Youngman
  • Patent number: 10611924
    Abstract: A method for coating a surface of a cell culture article includes dissolving a polymer having a covalently attached polypeptide in an aqueous solution to produce a polymer solution. The polymer is formed from monomers selected to form a polymer having a linear backbone, wherein the polymer is crosslink free. The weight percentage of the polypeptide relative to the polymer conjugated to the polypeptide is sufficiently high to render the polymer conjugated to the polypeptide water soluble. The aqueous solution is substantially free of organic solvents. The method further includes (i) disposing the polymer solution on the surface of the cell culture article to produce a coated article; and (ii) subjecting the coated article to sufficient heat or electromagnetic radiation to attach the polymer conjugated to a polypeptide to the surface of the cell culture article.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Anthony Glenn Frutos, David Henry, Corinne Walerack
  • Patent number: 10612129
    Abstract: Provided herein are ion-implanted glass based articles with improved flaw suppression properties. The ion-implanted glass based articles generally have a final indent fracture threshold (IFT) load of at least 650 grams, and/or a scratch threshold force of at least 10 N, which represents at least 1.25-fold enhancement compared to the glass based article prior to ion-implantation. Factors affecting the efficacy of the ion implantation process can include the IFT load of the starting glass or glass ceramic substrate (native IFT load), ion type, ion dose, implant energy, beam current, and glass temperature.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Sarko Cherekdjian, Benedict Osobomen Egboiyi, William Brashear Mattingly, III, Michael Yoshiya Nishimoto, Toshihiko Ono, Prakash Chandra Panda, Trevor Edward Wilantewicz
  • Patent number: 10611659
    Abstract: A glass manufacturing apparatus including a delivery vessel including a body portion with a cylindrical inner surface extending along a central axis of the body portion. In one embodiment, an upper end of the body portion is substantially equal to or lower than an uppermost portion of a travel path in a downstream end of a conduit connected to the delivery vessel. In another embodiment, a central axis of a delivery pipe is offset a distance from the central axis of the body portion of the delivery vessel. In still another embodiment, the delivery vessel includes a conical top including a taper angle from greater than 0° to about 20°. In further embodiments, methods include manufacturing glass with one or any combination of the above-referenced embodiments of glass manufacturing apparatus.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Martin Herbert Goller, Aaron Joshua Hade, Guido Peters
  • Patent number: 10611661
    Abstract: According to one embodiment, a method of manufacturing a glass article having a three-dimensional shape includes heating a glass article blank to a temperature above a setting temperature and coupling the glass article blank to an open-faced mold. The open-faced mold includes a molding region that has a three-dimensional shape that generally corresponds to the shape of the glass article and has an anisothermal temperature profile within the molding region. The method further includes maintaining an anisothermal temperature profile along the glass article blank and cooling the glass article blank while the glass article blank is coupled to the molding region of the open-faced mold to set the shape of the glass article.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Weiwei Luo, Rohit Rai, Ljerka Ukrainczyk, Zheming Zheng, Sam Samer Zoubi
  • Patent number: 10611664
    Abstract: A strengthened architectural glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened architectural glass or glass-ceramic sheet or article is provided. The process comprises cooling the architectural glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened architectural glass sheets that may be incorporated into one or more panes in single or multi-pane windows.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Peter Joseph Lezzi, Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 10613340
    Abstract: A transparent substrate having an antiglare surface with reduced display sparkle. The transparent substrate has a roughened antiglare surface and a diffraction element below the antiglare surface. The diffraction element reduces sparkle by filling gaps between sub-pixels in a pixelated display with orders of diffraction. A display system comprising the transparent substrate and a pixelated display is also provided.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Nicholas Francis Borrelli, Jacques Gollier, Ellen Marie Kosik Williams, James Andrew West