Patents Assigned to Corning Incorporated
  • Patent number: 11830707
    Abstract: A method for treating a flexible plastic substrate is provided herein. The method includes establishing an atmospheric pressure plasma beam from an inert gas using a power of greater than about 90W, directing the plasma beam toward a surface of the flexible polymer substrate, and scanning the plasma beam across the surface of the polymer substrate to form a treated substrate surface.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 28, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jiangwei Feng, Wageesha Senaratne
  • Patent number: 11820698
    Abstract: Coated glass articles for a glass-ceramic ceramming process including a parting agent coated on a surface of the glass article. The parting agent coating can comprise an aqueous dispersion comprising amorphous silicon dioxide agglomerate particles and a dispersant. The parting agent coating can be dried to forming a parting layer for glass articles in a glass stack for a ceramming process that transforms the glass articles into glass-ceramic articles.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: November 21, 2023
    Assignee: Corning Incorporated
    Inventors: Jill Marie Hall, Mallanagouda Dyamanagouda Patil, John Richard Ridge, Elizabeth Margaret Wheeler, Michael Aaron Zahradka, Christine Marie Ziegenfus
  • Patent number: 11823967
    Abstract: A glass or glass-ceramic carrier substrate, the substrate having undergone at least one complete cycle of a semiconductor fabrication process and having also undergone a reclamation process following the end of the semiconductor fabrication process; the glass or glass-ceramic carrier substrate comprising at least one of the following properties: (i) a coefficient of thermal expansion of less than 13 ppm/° C.; (ii) a Young's Modulus of 70 GPa to 150 GPa; (iii) an IR transmission of greater than 80% at a wavelength of 1064 nm; (iv) a UV transmission of greater than 20% at a wavelength of 255 nm to 360 nm; (v) a thickness tolerance within the same range as the thickness tolerance of the carrier substrate before undergoing at least one complete cycle of the semiconductor fabrication process; (vi) a total thickness variation of less than 2.5 ?m; (vii) a failure strength of greater than 80 MPa using a 4-point-bending test; (viii) a pre-shape of 50 ?m to 300 ?m.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Indrajit Dutta, Yi-Cheng Hsieh, Toshihiko Ono, Nicholas James Smith
  • Patent number: 11822100
    Abstract: Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 11820696
    Abstract: An optical fiber draw system and method of operating thereof. The method includes positioning a downfeed handle for supporting an optical fiber preform within a furnace such that the downfeed handle is movable within the furnace. The method further includes operating one or more heating elements to thermally heat at least a portion of an upper muffle extension disposed within the furnace, the one or more heating elements being moveable with the downfeed handle.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: November 21, 2023
    Assignee: Corning Incorporated
    Inventors: Tammy Michelle Hoffmann, John Michael Jewell, Nikolaos Pantelis Kladias
  • Patent number: 11820706
    Abstract: The embodiments described herein relate to glass articles that include mechanically durable glass compositions having high liquidus viscosity. The glass articles may include glass compositions having from 50 mol. % to 80 mol. % SiO2; from 7 mol. % to 25 mol. % Al2O3; from 2 mol. % to about 14 mol. % Li2O; 0.4 mol. % P2O5; and less than or equal to 0.5 mol. % ZrO2. The quantity (Al2O3 (mol. %)-R2O (mol. %)-RO (mol. %)) is greater than zero, where R2O (mol. %) is the sum of the molar amounts of Li2O, Na2O, K2O, Rb2O, and Cs2O in the glass composition and RO (mol. %) is the sum of the molar amounts of BeO, MgO, CaO, SrO, BaO, and ZnO in the glass composition. A molar ratio of (Li2O (mol. %))/(R2O (mol. %)) may be greater or equal to 0.5. In embodiments, the glass composition may include B2O3. The glass compositions are fusion formable and have high damage resistance.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Benjamin Zain Hanson, Alexander I Priven
  • Patent number: 11820694
    Abstract: Apparatuses and methods for heating moving continuous glass ribbons at desired lines of separation and/or for separating glass sheets from continuous glass ribbons are disclosed. An apparatus includes a translatable support portion and a heating apparatus coupled to the support portion. The heating apparatus is configured to contact the continuous glass ribbon across at least a portion of a width of the continuous glass ribbon at the desired line of separation as the support portion moves in a draw direction, thereby preferentially applying heat to a first side of the continuous glass ribbon at the desired line of separation as the continuous glass ribbon moves in the draw direction.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Dennis William Buckley, Gary Lamont Hively, Michael Albert Joseph, II, Jason Rudolph Koch, Ritesh Satish Lakhkar, Mark Thomas Massaro, Robert Richard Quiel, Richard Alan Quinn
  • Patent number: 11820703
    Abstract: Ion-exchanged alkali aluminosilicate glass articles with a ratio of peak compressive stress value to Young's modulus value of 15 or more. The glass articles may include Al2O3 mol %+RO mol %?17 mol %, where RO mol %=MgO mol %+CaO mol %, and be substantially free of ZnO, SrO, BaO, B2O3, P2O5, Li2O, and K2O. The glass articles may have a peak compressive stress value in a range of 500 MPa to 1300 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: November 21, 2023
    Assignee: Corning Incorporated
    Inventor: Peter Joseph Lezzi
  • Patent number: 11822117
    Abstract: Curable compositions that include an oligomer with one or more internal urethane linkages and OH groups capped by an Acrylate-End-Capping (AEC) compound. The curable compositions may be made by reacting a polyol with a diisocyanate compound to form a pre-oligomer compound having one or more internal urethane linkages and terminal OH groups. The curable coating compositions may be cured to form a coating for an optical fiber, for example, a primary coating for an optical fiber.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 21, 2023
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Bin Yang
  • Patent number: 11820701
    Abstract: A method for generating various stress profiles for chemically strengthened glass. An alkali aluminosilicate glass is brought into contact with an ion exchange media such as, for example, a molten salt bath containing an alkali metal cation that is larger than an alkali metal cation in the glass. The ion exchange is carried out at temperatures greater than about 420° C. and at least about 30° C. below the anneal point of the glass.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Douglas Clippinger Allan, Xiaoju Guo, Guangli Hu, Gaozhu Peng
  • Patent number: 11815713
    Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Gaozhu Peng
  • Patent number: 11815726
    Abstract: Embodiments of the disclosure are directed to fiber optic closure terminals with increased versatility. A fiber optic closure terminal is provided that includes a mount assembly for mounting at least one fiber optic module within a housing. The mount assembly includes a pivotable plate and a translatable plate configured to pivot the at least one fiber optic module greater than ninety degrees thereby providing better access to fiber management features at a bottom of the base of the fiber optic closure terminal. The improved access increases versatility by facilitating installation and/or maintenance of connecting a fiber optic cable to optical connections in the fiber optic module(s). The fiber optic closure terminal can also include a strain relief assembly configured for attachment and removal from the base of the housing for increased versatility regarding installation and/or maintenance of the fiber optic closure terminal.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: November 14, 2023
    Assignee: CORNING INCORPORATED
    Inventor: Qing Xu
  • Patent number: 11814316
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 11813597
    Abstract: A honeycomb body (300) including a plurality of radially-extending walls (322) intersecting with a plurality of circumferentially-extending walls (324), the plurality of radially-extending walls (322) and the plurality of circumferentially-extending walls (324) form a plurality of circumferential zones (334A, 334B, 334C) of cells (308). The plurality of circumferential zones (334A, 334B, 334C) of cells (308) includes a first zone of cells (334A) including two or more first rings of cells (330) and having a first cell density, and a second zone of cells (334B) including two or more rings of cells (330) having varying cell densities across the two or more rings of cells. Other structures and extrusion dies are disclosed.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Priyank Paras Jain, Kenneth Richard Miller, Artemii Alexandrovitch Shamkin
  • Patent number: 11813607
    Abstract: Exemplary liquid lenses generally include two liquids disposed within a microfluidic cavity disposed between a first window and a second window. Applying varying electric fields to these liquid lenses can vary the wettability of one of the liquids with respect to this microfluidic cavity, thereby varying the shape and/or the curvature of the meniscuses formed between the two liquids and, thus, changing the optical focal length or the optical power of the liquid lenses. These liquids can expand and/or contract as result of varying temperatures. The exemplary liquid lenses include one or more thermal compensation chambers to allow these liquids to expand and/or contract without impacting the integrity of the microfluidic cavity, for example, without bowing or deflecting the first window and/or the second window.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: November 14, 2023
    Assignees: CORNING INCORPORATED, LG INNOTEK CO. LTD
    Inventor: Christian Daniel Gutleben
  • Patent number: 11814649
    Abstract: A bioactive glass-ceramic composition as defined herein. Also disclosed are methods of making and using the disclosed compositions.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: November 14, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Huayun Deng, Qiang Fu, John Christopher Mauro
  • Patent number: 11815732
    Abstract: A liquid lens apparatus includes a first substrate and a sensor. The first substrate has first and second opposing surfaces, a central portion, and a peripheral portion outside of the central portion. The sensor is formed lithographically on either the first or second surfaces of the peripheral portion of the first substrate such that the sensor is on an exterior surface of the liquid lens apparatus. The sensor is configured to detect a temperature of the liquid lens apparatus to enable compensation for thermal expansion or contraction of the liquid lens apparatus resulting from changes in temperature of the liquid lens apparatus.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: November 14, 2023
    Assignees: CORNING INCORPORATED, LG INNOTEK CO. LTD.
    Inventors: Christian Daniel Gutleben, Shiwen Liu, Nicholas James Pfister, Ernesto Sanchez, Jr.
  • Patent number: 11815657
    Abstract: An article is described herein that includes: a translucent substrate having a major surface; and an anti-reflective coating disposed on the major surface and forming an anti-reflective surface. The article exhibits a single side average photopic light reflectance at the anti-reflective surface of less than 0.35%. Further, the article exhibits a single side color shift (?C) of less than 6 over an incident angle range from 0 degrees to 60 degrees incidence at the anti-reflective surface, wherein the anti-reflective coating comprises a physical thickness from about 50 nm to less than 500 nm. In addition, the anti-reflective coating comprises a plurality of layers that comprises at least one low refractive index layer and at least one high refractive index layer. Further, each high refractive index layer has a refractive index of greater than 2.0 and each low refractive index layer has a refractive index of less than 1.7.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, James Joseph Price, Nicholas M Walker
  • Patent number: 11807573
    Abstract: A glass article (and methods for forming the same) includes a glass body having first and second opposing primary surfaces and a thickness defined between the primary surfaces. The glass body includes a compressive stress region that includes: a surface stress of greater than about 900 MPa (compressive), a spike region having a first slope, and a tail region having a second slope. The spike region and the tail region can intersect at a knee region having a stress of greater than about 35 MPa (compressive), wherein the stress at the knee region is defined as the point where the asymptotic extrapolation of the spike region and the tail region intersect. The first slope of the spike region can be steeper than about ?30 MPa/?m.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: November 7, 2023
    Assignee: Corning Incorporated
    Inventors: Yuhui Jin, Joshua James McCaslin, Jong Se Park, Vitor Marino Schneider, Wei Sun
  • Patent number: 11807571
    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: November 7, 2023
    Assignees: Corning Incorporated, ICFO
    Inventors: Albert Carrilero, Prantik Mazumder, Valerio Pruneri