Patents Assigned to DE NORA PERMELEC LTD.
  • Patent number: 10760166
    Abstract: A sacrificial electrode attachment structure includes: a first pipe in which electrolyte flows; a second pipe which is formed of an insulating material and allows the electrolyte to flow; a cylindrical sacrificial electrode unit arranged between the first pipe and the second pipe so as to allow the electrolyte to flow, and including a sacrificial electrode that contacts the electrolyte; a first pipe joint adapted to liquid-tightly connect the first pipe to the sacrificial electrode unit in a detachable manner; and a second pipe joint adapted to liquid-tightly connect the second pipe to the sacrificial electrode unit in a detachable manner.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 1, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventors: Hideo Otsu, Koji Yoshimura
  • Patent number: 10676832
    Abstract: Provided is a method capable of producing, in a simple and low-cost manner, an electrolysis electrode which can be used in alkaline water electrolysis and has superior durability against output variation. The method for producing an anode for alkaline water electrolysis includes: a step of dissolving lithium nitrate and a nickel carboxylate in water to prepare an aqueous solution containing lithium ions and nickel ions, a step of applying the aqueous solution to the surface of a conductive substrate having at least the surface composed of nickel or a nickel-based alloy, and a step of subjecting the conductive substrate to which the aqueous solution has been applied to a heat treatment at a temperature within a range from at least 450° C. to not more than 600° C., thereby forming a catalyst layer composed of a lithium-containing nickel oxide on the conductive substrate.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 9, 2020
    Assignees: DE NORA PERMELEC LTD, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Shigenori Mitsushima, Sho Fujita, Ikuo Nagashima, Yoshinori Nishiki, Akiyoshi Manabe, Akihiro Kato
  • Patent number: 10676831
    Abstract: The claimed invention provides an economical cathode for electrolysis and a method of manufacturing the same. The cathode includes a conductive base and a catalyst layer including a catalyst component. The conductive base, e.g. a wire mesh, includes plural intersection portions and is made of nickel. The cathode catalyst layer includes a catalyst component, such as platinum, and is formed by applying an application liquid to the base and drying and solidifying the liquid. The solidified portion of the applied liquid is not formed in the intersection portions of the base, or even if formed, the cross-sectional shape of the solidified portion has mesh-shaped pores with an average porosity of 15% or larger. The base is prepared by preheating to a temperature from 43° C. to 120° C. immediately before applying the application liquid, and thereafter the cathode catalyst layer is formed.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 9, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventor: Atsumi Takeuchi
  • Patent number: 10669638
    Abstract: Provided are an electrolyzer having excellent durability against reverse current. The electrolyzer 300 includes an anode 314, an anode chamber 310 housing the anode 314, a cathode 330, a cathode chamber 320 housing the cathode 330, and a diaphragm that separates the anode chamber 310 and the cathode chamber 320, wherein a reverse current absorption body 334 formed of a sintered compact containing nickel is disposed in at least one of an inside of the cathode chamber 320 and an inside of the anode chamber 310, and the reverse current absorption body 334 is not directly coupled to the cathode 330 and the anode 314 but is electrically connected to at least one of the cathode 330 and the anode 314.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 2, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventors: Suguru Takahashi, Akihiro Madono, Takamichi Kishi, Osamu Arimoto
  • Patent number: 10619253
    Abstract: Provided is an alkaline water electrolysis method capable of reducing or preventing degradation in cathode and anode performance even in an operation of repeated cycles of frequent starting and stopping, and/or even in an operation involving a significant output variation.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 14, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventor: Akiyoshi Manabe
  • Patent number: 10619255
    Abstract: Provided are an anode for alkaline water electrolysis that can achieve a low overpotential at low cost, and a method for producing the anode for alkaline water electrolysis. An anode for alkaline water electrolysis having electrode catalyst layers 2, 3 composed of a first catalyst component having either a nickel-cobalt spinel oxide or a lanthanide-nickel-cobalt perovskite oxide and a second catalyst component having at least one of iridium oxide and ruthenium oxide formed on the surface of a conductive substrate 1 composed of nickel or a nickel-based alloy, and a method for producing the anode for alkaline water electrolysis.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: April 14, 2020
    Assignees: DE NORA PERMELEC LTD, KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Akihiro Kato, Fumiya Tsujii, Yuji Kamei, Ikuo Shimomura, Ikuo Nagashima
  • Patent number: 10622659
    Abstract: Provided is a water treatment system using an alkaline water electrolytic device and an alkaline fuel cell in which for continuing an electrolytic treatment, a hydrogen gas and an oxygen gas required in an alkaline water electrolytic device and an alkaline fuel cell, an amount of water corresponding to raw water lost through the electrolytic treatment, and an electrolytic solution are efficiently circulated and used in a water treatment system to considerably reduce electric power consumption.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 14, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventors: Akiyoshi Manabe, Fumiya Tsujii, Akihiro Kato
  • Patent number: 10590551
    Abstract: Provided are an electrode for electrolysis having excellent durability against reverse current, and a method that enables production of the electrode for electrolysis at low cost. The electrode for electrolysis 130 includes a conductive substrate 132 on which a catalyst layer is formed, and a reverse current absorption body 134 that is coupled to the conductive substrate 132 in a detachable manner, wherein the reverse current absorption body 134 is formed from a sintered compact containing nickel. The method for producing the electrode for electrolysis 130 includes a sintered compact formation step of obtaining the sintered compact by sintering a raw material powder composed of any one of Raney nickel alloy particles containing nickel and an alkali-soluble metal element, metallic nickel particles, and a mixture of Raney nickel alloy particles and metallic nickel particles, and a coupling step of coupling the sintered compact to the conductive substrate 132.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 17, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventors: Suguru Takahashi, Akihiro Madono, Takamichi Kishi, Osamu Arimoto
  • Publication number: 20200080212
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode, provided on one side of the electrolyte membrane, that contains a cathode catalyst used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride; an anode, provided opposite to the one side of the electrolyte membrane, that contains an anode catalyst used to oxidize water to produce protons; and an anode support, provided opposite to the electrolyte membrane side of the anode, that supports the anode. The anode support is formed of an elastic porous body of which the Young's modulus is greater than 0.1 N/mm2 and less than 43 N/mm2.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Setsuro OGATA, Akihiro KATO, Awaludin ZAENAL, Koji MATSUOKA, Yasushi SATO
  • Publication number: 20190352786
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Application
    Filed: October 18, 2017
    Publication date: November 21, 2019
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
  • Patent number: 10407781
    Abstract: To provide an electrolytic apparatus and an electrolytic method which can remove a risk of reaching an explosion limit of hydrogen by gradual accumulation of a very small amount of gas in a circulation line of an electrolytic solution in an electrolytic process generating hydrogen. The electrolytic apparatus 1 is characterized by including an anode gas feeding line 20 connecting a gas phase region 21 to an anode side gas-liquid separation means in order to dilute the concentration of the hydrogen gas by feeding anode gas into the gas phase region 21 in which hydrogen gas can exist as a gas phase. By feeding at least a part of the anode gas to the gas phase region 21 with the anode gas feeding line 20, the hydrogen gas in the gas phase region 21 is diluted with the anode gas so that the concentration of the hydrogen gas is surely less than a lower limit value of explosion limit.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 10, 2019
    Assignee: DE NORA PERMELEC LTD
    Inventors: Hiroki Domon, Akiyoshi Manabe, Masahiro Ohara
  • Publication number: 20190264340
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
  • Patent number: 10381172
    Abstract: A method for manufacturing an electrode, which can suppress waste of electrode substrate, prevent impairment of operability, improve flatness and the like, and reliably prevent falling off thereof, and simultaneously can prevent wrinkles and bulges of the electrode caused by the heat treatment and the like, thereby manufacturing a higher-quality electrode. The method includes: preparing a rectangular plate-like electrode substrate having attachment portions at two ends including opposing sides by linearly bending two parts so that each part has an overall even side; holding the attachment portions by the suspension jig and a lower jig each being provided with a movement restriction portion with which a leading end of each attachment portion comes into contact, thereby maintaining the electrode substrate in a suspended state; and performing at least heat treatment on the suspended electrode substrate so as to manufacture a portion for an electrode.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: August 13, 2019
    Assignee: DE NORA PERMELEC LTD
    Inventors: Atsumi Takeuchi, Tadanori Kishi
  • Patent number: 10202698
    Abstract: A device for producing an organic hydride 10 of an aspect of the present invention has an electrochemical cell provided with an anode 12 on a surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 on another surface of the electrolyte membrane 11. A gap is provided between the anode 12 and the electrolyte membrane 11. The anode 12 has a network structure with an aperture ratio of 30 to 70%, and has an electrical supply supporting material formed of an electronic conductor and the electrode catalyst held by the electrical supply supporting material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: February 12, 2019
    Assignees: Yokohama National University, DE NORA PERMELEC LTD
    Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Yoshinori Nishiki, Akihiro Kato, Akiyoshi Manabe, Yasushi Sato, Kota Miyoshi, Kojiro Nakagawa, Shinji Oshima
  • Publication number: 20180282884
    Abstract: Provided are an electrode for electrolysis having excellent durability against reverse current, and a method that enables production of the electrode for electrolysis at low cost. The electrode for electrolysis 130 includes a conductive substrate 132 on which a catalyst layer is formed, and a reverse current absorption body 134 that is coupled to the conductive substrate 132 in a detachable manner, wherein the reverse current absorption body 134 is formed from a sintered compact containing nickel. The method for producing the electrode for electrolysis 130 includes a sintered compact formation step of obtaining the sintered compact by sintering a raw material powder composed of any one of Raney nickel alloy particles containing nickel and an alkali-soluble metal element, metallic nickel particles, and a mixture of Raney nickel alloy particles and metallic nickel particles, and a coupling step of coupling the sintered compact to the conductive substrate 132.
    Type: Application
    Filed: April 27, 2017
    Publication date: October 4, 2018
    Applicant: DE NORA PERMELEC LTD
    Inventors: Suguru TAKAHASHI, Akihiro MADONO, Takamichi KISHI, Osamu ARIMOTO
  • Publication number: 20180245224
    Abstract: Provided are an electrolyzer having excellent durability against reverse current. The electrolyzer 300 includes an anode 314, an anode chamber 310 housing the anode 314, a cathode 330, a cathode chamber 320 housing the cathode 330, and a diaphragm that separates the anode chamber 310 and the cathode chamber 320, wherein a reverse current absorption body 334 formed of a sintered compact containing nickel is disposed in at least one of an inside of the cathode chamber 320 and an inside of the anode chamber 310, and the reverse current absorption body 334 is not directly coupled to the cathode 330 and the anode 314 but is electrically connected to at least one of the cathode 330 and the anode 314.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 30, 2018
    Applicant: DE NORA PERMELEC LTD
    Inventors: Suguru TAKAHASHI, Akihiro MADONO, Takamichi KISHI, Osamu ARIMOTO
  • Patent number: 10053380
    Abstract: There is provided an electrolysis device configured to use unpurified water containing a small amount of ions of alkaline earth metal such as Ca and Mg as raw water, and to have a structure of supplying the raw water to a cathode chamber in which deposition of scale of the alkaline earth metal on the surface of a cathode provided in the cathode chamber can be prevented. The electrolysis device and the apparatus for producing electrolyzed ozone water are configured by an electrolysis cell formed in a manner that a membrane-electrode assembly is configured by a solid polymer electrolyte separation membrane formed by a cation exchange membrane, and an anode and a cathode which are respectively adhered to both surfaces of the solid polymer electrolyte separation membrane, and the membrane-electrode assembly is compressed from both surfaces thereof, and thus the solid polymer electrolyte separation membrane, the anode, and the cathode are adhered to each other.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 21, 2018
    Assignees: AQUAECOS LTD., DE NORA PERMELEC LTD
    Inventors: Hideo Nitta, Masashi Hosonuma
  • Patent number: 10053787
    Abstract: Provided are an electrolytic cathode structure that can suppress the degradation of an activated cathode even if a reverse current flows upon the stoppage of operation of an electrolyzer in an electrode structure allowing the distance between the electrode and an electrode current collector to be maintained at an approximately constant value, and an electrolyzer using the same. The electrolytic cathode structure includes a metal elastic cushion member 1 compressed and accommodated between an activated cathode 2 and a cathode current collector 3. At least a surface layer of the cathode current collector 3 consumes a larger oxidation current per unit area than the activated cathode. The electrolyzer is partitioned by an ion exchange membrane into an anode chamber for accommodating an anode and a cathode chamber for accommodating a cathode. The electrolytic cathode structure is used for the cathode.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: August 21, 2018
    Assignee: DE NORA PERMELEC LTD
    Inventors: Akihiro Madono, Mitsumasa Okamoto
  • Publication number: 20180171494
    Abstract: A diaphragm includes a porous supporting body and a polymer porous membrane. When one of surfaces of the porous membrane is defined as a surface A, the other surface opposite to the surface A is defined as a surface B, a section of the porous membrane parallel to the surfaces A and B is defined as a section C, an average pore diameter on the surface A is defined as an average pore diameter DA, an average pore diameter on the surface B is defined as an average pore diameter DB, and an average pore diameter on the section C is defined as an average pore diameter DC, the average pore diameters DA and DB are substantially equal to each other, and the average pore diameter DC is larger than each of the average pore diameters DA and DB.
    Type: Application
    Filed: May 16, 2016
    Publication date: June 21, 2018
    Applicants: KAWASAKI JUKOGYO KABUSHIKI KAISHA, DE NORA PERMELEC LTD, THYSSENKRUPP UHDE CHLORINE ENGINEERS (JAPAN) LTD.
    Inventors: Takafumi ITO, Ikuo SHIMOMURA, Yuji KAMEI, Akiyoshi MANABE, Akihiro KATO, Terumi HASHIMOTO
  • Publication number: 20180175425
    Abstract: Electric power energy required in an alkaline water electrolytic device and an alkaline fuel cell for continuing an electrolytic treatment, a hydrogen gas and an oxygen gas serving as raw materials for the electric power energy, an amount of water corresponding to raw water lost through the electrolytic treatment, and an electrolytic solution are efficiently circulated and used in a water treatment system to considerably reduce electric power consumption.
    Type: Application
    Filed: June 16, 2016
    Publication date: June 21, 2018
    Applicant: DE NORA PERMELEC LTD
    Inventors: Akiyoshi MANABE, Fumiya TSUJII, Akihiro KATO