Patents Assigned to Elenza, Inc.
  • Publication number: 20180333086
    Abstract: An implant includes a first calcium sensor portion and a body portion. The first calcium sensor portion includes a calcium-selective binding portion. The body portion includes a controller configured to process a signal received from the calcium-selective binding portion, and a transmitter/receiver.
    Type: Application
    Filed: November 11, 2016
    Publication date: November 22, 2018
    Applicant: Elenza, Inc.
    Inventor: Amitava Gupta
  • Publication number: 20180243083
    Abstract: An intraocular implant (IOI) includes a lens structure with variable optical power, a sensor that detects an optical accommodation response, a rechargeable power storage device, a recharging interface, a wireless communication interface, and a controller. The controller can receive information from the sensor indicating an optical accommodation response, control the lens structure to vary the variable optical power based on the information received from the sensor, control the recharging interface to recharge the rechargeable power storage device, and further control the recharging interface to receive power for operation of the IOI, and transmit and receive information through the wireless communication interface.
    Type: Application
    Filed: September 3, 2015
    Publication date: August 30, 2018
    Applicant: Elenza, Inc.
    Inventors: Amitava Gupta GUPTA, Rudy Mazzocchi, Roel TRIP, Brian PETERSON, George CINTRA, Joey CHEN, Leslie HALBERG
  • Patent number: 10052195
    Abstract: An implantable ophthalmic device with flexible, fluid-filled membranes provide dynamically variable optical power to restore lost accommodation in individuals suffering from presbyopia or aphakia without moving parts or reducing the amount of transmitted light. Actuating the device causes the fluid-filled membrane to change curvature, which produces a corresponding change in optical power. For instance, squeezing the edge of the membrane causes the center of the membrane to bulge by an amount proportional to the squeezing force. Alternatively, heating or applying a voltage to the membrane may cause the liquid in the membrane to undergo a phase transition accompanied by a corresponding change in volume that causes the membrane to inflate so as to change the optical power of the device.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: August 21, 2018
    Assignee: ELENZA, INC.
    Inventors: Ronald David Blum, Rudy Mazzocchi
  • Patent number: 9675444
    Abstract: Many modern implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically sealed within cavities formed by bonding together two or more glass wafers. Bonding the glass wafers together with laser fusion bonding, pressure bonding, or anodic bonding creates a seal that leaks at a rate of less than about 5×10?12 Pa m3s?1 when subjected to a helium leak test. Hermetically sealed feedthroughs formed of conductive material running through channels in the wafers provide electrical connections to components inside the sealed cavities. In some cases, the conductive material has a coefficient of thermal expansion (CTE) that is roughly equal to (e.g., within 10% of) the CTE of the glass wafers to minimize leakage due to thermally induced expansion and contraction of the conductive material and the glass wafer.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: June 13, 2017
    Assignee: ELENZA, INC.
    Inventors: Ronald D. Blum, Amitava Gupta, Jean-Noel Fehr, Jean-Christophe Roulet, Urban Schnell, Walter Doll, Roland Michaely
  • Publication number: 20160324628
    Abstract: Described herein is an implantable intraocular lens that can automatically adjust its optical power based on the eye's natural response for accommodation of targets at varying distances. The implantable intraocular lens includes a physiological sensor for detecting a physiological response of an eye associated with an ocular accommodation, and an electro-optical element configured to adjust optical power based on the detected physiological response of the eye.
    Type: Application
    Filed: January 7, 2015
    Publication date: November 10, 2016
    Applicant: Elenza ,Inc.
    Inventors: Amitava GUPTA, Rudy MAZZOCCHI, Roel TRIP, Urban SCHNELL, Jean-Noel FEHR
  • Patent number: 9259309
    Abstract: Ophthalmic devices with dynamic electro-active elements offer variable optical power and/or depth of field that restore lost accommodation in individuals suffering from presbyopia or aphakia. An illustrative device senses physiological processes indicative of the accommodative response and actuates a dynamic electro-active element to provide the desired change in optical power and/or depth of field. The illustrative device includes two application-specific integrated circuits (ASICs) for processing the accommodative response and actuating the electro-active element: a high-voltage ASIC that steps up a low voltage from a power supply to a higher voltage suitable for actuating the electro-active element, and another ASIC that operates at low voltage (and therefore consumes little power) and controls the operating state of the high-voltage ASIC. Because each ASIC operates at the lowest possible voltage, the illustrative ophthalmic device dissipates less power than other ophthalmic devices.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: February 16, 2016
    Assignee: ELENZA, INC.
    Inventors: Jean-Noel Fehr, Walter Doll, Urban Schnell
  • Publication number: 20150182331
    Abstract: Many modern implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically sealed within cavities formed by bonding together two or more glass wafers. Bonding the glass wafers together with laser fusion bonding, pressure bonding, or anodic bonding creates a seal that leaks at a rate of less than about 5×10?12 Pa m3s?1 when subjected to a helium leak test. Hermetically sealed feedthroughs formed of conductive material running through channels in the wafers provide electrical connections to components inside the sealed cavities. In some cases, the conductive material has a coefficient of thermal expansion (CTE) that is roughly equal to (e.g., within 10% of) the CTE of the glass wafers to minimize leakage due to thermally induced expansion and contraction of the conductive material and the glass wafer.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Applicant: Elenza, Inc.
    Inventors: Ronald D. BLUM, Amitava Gupta, Jean-Noel Fehr, Jean-Christophe Roulet, Urban Schnell, Walter Doll, Roland Michaely
  • Patent number: 9066796
    Abstract: The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: June 30, 2015
    Assignee: ELENZA, INC.
    Inventor: Jack T. Holladay
  • Patent number: 9044316
    Abstract: Many modem implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically sealed to facilitate mechanically connecting components of an implantable ophthalmic device. Furthermore, the device includes at least one battery with a surface comprising electrical contact portions, a housing for the at least one battery, a first wafer bonded to the housing such that the housing and the first wafer form a hermetically sealed surface around the battery, and an electronic circuit electrically connected to the electrical contact portions of the battery.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 2, 2015
    Assignee: ELENZA, INC.
    Inventors: Jean-Noel Fehr, Alain Saurer, Andreas Schlappi
  • Patent number: 8992610
    Abstract: Many modern implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically scaled within cavities formed by bonding together two or more glass wafers. Bonding the glass wafers together with laser fusion bonding, pressure bonding, or anodic bonding creates a seal that leaks at a rate of less than about 5×10?12 Pa m3 s?1 when subjected to a helium leak test. Hermetically sealed feedthroughs formed of conductive material running through channels in the wafers provide electrical connections to components inside the sealed cavities. In some cases, the conductive material has a coefficient of thermal expansion (CTE) that is roughly equal to (e.g., within 10% of) the CTE of the glass wafers to minimize leakage due to thermally induced expansion and contraction of the conductive material and the glass wafer.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Elenza, Inc.
    Inventors: Ronald D. Blum, Amitava Gupta, Jean-Noel Fehr, Jean-Christophe Roulet, Urban Schnell, Walter Doll, Roland Michaely
  • Publication number: 20140063464
    Abstract: The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.
    Type: Application
    Filed: February 25, 2013
    Publication date: March 6, 2014
    Applicant: Elenza, Inc.
    Inventor: Jack T. HOLLADAY
  • Publication number: 20130261744
    Abstract: Implantable ophthalmic devices with aspheric lenses and dynamic electro-active elements offer excellent depth of field and image quality while providing high optical throughput. An exemplary implantable ophthalmic device includes an aspheric lens with a negative spherical aberration that varies with radius. The aspheric lens can have peak optical powers at its geometric centers surrounded by a region of varying optical power (with varying slope) that extends radially from its center. When implanted, these aspheric lenses provide an incremental optical power that varies as a function of pupil diameter, which changes with object distance, for viewing far, intermediate, and near objects. The aspheric lens may also bonded or integrally formed with a spherical lens that provides fixed optical power for viewing far objects and/or a dynamic electro-active element that with two or more states (e.g., on and off) for increasing the effective optical power when viewing near objects.
    Type: Application
    Filed: May 31, 2011
    Publication date: October 3, 2013
    Applicant: Elenza, Inc.
    Inventors: Amitava Gupta, Nicholas Wooder, Ronald D. Blum, Rudy Mazzocchi, Urban Schnell
  • Publication number: 20130242256
    Abstract: A sensor system includes at least two sensors for distinguishing accommodative stimuli from changes in ambient lights levels and task-induced changes in the pupil diameter. When implanted, the first sensor is disposed completely within the pupil; even when fully constricted, the pupil does not occlude the first sensor, allowing the sensor to make precise measurements of ambient luminous flux levels. The pupil occludes part of the second sensor's active area(s) as the pupil dilates and constricts. As a result, the second sensor measures both ambient luminous flux and pupil diameter. A processor estimates the pupil diameter and determines whether it's changing in response to accommodative stimuli or other factors by comparing to predetermined values. The sensor system sends a signal to an optical component, which in turn can respond by changing optical power to focus for near vision upon detection of accommodative stimuli.
    Type: Application
    Filed: September 12, 2011
    Publication date: September 19, 2013
    Applicant: Elenza, Inc.
    Inventors: Jean-Noel Fehr, Urban Schnell, Walter Doll, Roland Michaely, Jean-Christophe Roulet, Amitava Gupta, Ronald Blum, Rudy Mazzocchi
  • Patent number: 8384002
    Abstract: The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 26, 2013
    Assignee: Elenza, Inc.
    Inventor: Jack T. Holladay
  • Publication number: 20110213462
    Abstract: The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 1, 2011
    Applicant: Elenza, Inc.
    Inventor: Jack T. Holladay
  • Patent number: 7964833
    Abstract: The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 21, 2011
    Assignee: Elenza, Inc.
    Inventor: Jack T. Holladay