Patents Assigned to Energy Research Corporation
  • Publication number: 20150001447
    Abstract: The present invention provides a CO shift conversion device and a CO shift conversion method which improves CO conversion rate without increasing usage of a shift conversion catalyst. A CO shift conversion device includes: a CO shift converter 10 having a catalyst layer 5 composed of a CO shift conversion catalyst and performing CO shift conversion process on a gas flowing inside; and a CO2 remover 51 removing CO2 contained in a gas introduced. The catalyst layer 5 is composed of a CO shift conversion catalyst having a property that a CO conversion rate decreases with an increase of the concentration of CO2 contained in a gas flowing inside. The concentration of CO2 contained in a gas G0 to be processed is lowered by the CO2 remover 51 and, after that, the resultant gas is supplied to the CO shift converter 10 where it is subjected to the CO shift conversion process.
    Type: Application
    Filed: December 13, 2012
    Publication date: January 1, 2015
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Kaori Morimoto, Chihiro Ito
  • Publication number: 20140377156
    Abstract: Disclosed is a CO2 permselective membrane 1 having an amino acid ionic liquid and a porous membrane impregnated with the amino acid ionic liquid, wherein the amino acid ionic liquid contains a certain range of water.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 25, 2014
    Applicants: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Eiji Kamio, Shohei Kasahara, Hideto Matsuyama
  • Publication number: 20140352540
    Abstract: CO2-facilitated transport membrane that can be applied to a CO2-permeable membrane reactor is stably provided. The CO2-facilitated transport membrane is provided such that a gel layer 1 composed of a hydrogel membrane is deposited onto a porous membrane 2. More preferably, the gel layer 1 deposited onto a hydrophilic porous membrane 2 is coated with and supported by hydrophobic porous membranes 3 and 4. The gel layer contains a deprotonating agent including an alkali metal element together with glycine. The deprotonating agent is preferably a carbonate or a hydroxide of an alkali metal element, and more preferably, the alkali metal element is potassium, cesium, or rubidium.
    Type: Application
    Filed: July 26, 2012
    Publication date: December 4, 2014
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Eiji Kamio, Masaaki Teramoto, Nobuaki Hanai, Hideto Matsuyama
  • Publication number: 20140290479
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing at least carbon dioxide, nitrogen and water vapor, the energy utilization efficiency thereof is improved. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively. When the second mixture gas is supplied, the second separation membrane 34 separates water vapor that permeates through the second separation membrane 34 by allowing water vapor to permeate selectively.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: OSAMU OKADA, MASAAKI TERAMOTO, EIJI KAMIO, NOBUAKI HANAI, YASATO KIYOHARA
  • Patent number: 8784531
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 22, 2014
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Patent number: 8617297
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: December 31, 2013
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Publication number: 20130324392
    Abstract: Provided is a production method for a porous alumina material, comprising the steps of: mixing an alkoxysilane solution that comprises an alkoxysilane, a mixed solvent comprising water and an alcohol, and an inorganic acid, with an aluminum solution comprising an aluminum compound and water, to prepare a mixed solution in which the aluminum compound and the alkoxysilane are dissolved in the mixed solvent; co-precipitating aluminum hydroxide with a silicon compound in the mixed solution, to form a precipitate; and baking the precipitate to form a porous alumina material comprising aluminum oxide and silicon oxide.
    Type: Application
    Filed: January 13, 2012
    Publication date: December 5, 2013
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Akira Hasegawa, Osamu Okada, Chihiro Ito
  • Patent number: 8545962
    Abstract: Surfaces are provided comprising an array of partially embedded nano-fibers. Two such surfaces may contact each other such that the respective nano-fibers contact at orthogonal angles, resulting in ultra-low friction and ultra-low adhesion contact. Such configurations are useful in several NEMS or MEMS applications, as well as macro-sized applications. Alternatively, the surfaces may contact each other such that the respective nano-fibers are parallel. These configurations are useful in micro-stage or high-order three-dimensional self assembly applications.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: October 1, 2013
    Assignee: Paradigm Energy Research Corporation
    Inventor: Daniel Peter Sheehan
  • Publication number: 20130199370
    Abstract: A steam permselective membrane containing a crosslinked hydrophilic polymer is provided. The steam permselective membrane may further contain at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
    Type: Application
    Filed: July 26, 2011
    Publication date: August 8, 2013
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Eiji Kamio, Nobuaki Hanai, Miwako Obama
  • Publication number: 20130160650
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Application
    Filed: January 16, 2013
    Publication date: June 27, 2013
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventor: RENAISSANCE ENERGY RESEARCH CORPORATION
  • Patent number: 8447707
    Abstract: Automated control of a power network is provided by: providing multiple intelligent power controllers (IPCs) associated with multiple components of the power network, each IPC being associated with a different component; obtaining at least one raw data stream representative of at least one operational aspect of at least one component of the multiple components; and automatically associating, by at least one intelligent power controller associated with at least one component, metadata with the at least one raw data stream to produce at least one self-identifying data stream. The associated metadata describes one or more characteristics of the at least one raw data stream, and the at least one self-identifying data stream facilitates automated creation of predictive process models to assist in automated control of the power network by an IPC manager of the power network.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: May 21, 2013
    Assignee: Intelligent Power and Energy Research Corporation
    Inventors: Darrell D. Massie, Michael A. Miller, Peter S. Curtiss
  • Patent number: 8377170
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 19, 2013
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Publication number: 20120219718
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 30, 2012
    Applicant: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Patent number: 8197576
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 12, 2012
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Patent number: 6625229
    Abstract: Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: September 23, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: William B. Dress, Jr., Stephen F. Smith
  • Patent number: 6621878
    Abstract: Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: September 16, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: William B. Dress, Jr., Stephen F. Smith
  • Patent number: 6606350
    Abstract: Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: August 12, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: William B. Dress, Jr., Stephen F. Smith
  • Patent number: 6603818
    Abstract: Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: August 5, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: William B. Dress, Jr., Stephen F. Smith
  • Patent number: 6579393
    Abstract: Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 17, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.
  • Patent number: 6562518
    Abstract: Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: John B. Bates