Patents Assigned to Friedrich Schiller Universität Jena
  • Patent number: 8891917
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann
  • Patent number: 8791997
    Abstract: A device and a method for non-contact recording of spatial coordinates of a surface includes a sensor head and a controller connected to the sensor head. The sensor head is designed as a portable hand-held device, a projector and two cameras. The controller is also designed as a portable device, with an electrochemical energy source housed in the controller or in the sensor head for power supply to the sensor head and the controller and no cable connection of the sensor head or the controller is provided to further stationary components of the device.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 29, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christoph Munkelt, Ingo Schmidt, Peter Kuehmstedt, Gunther Notni
  • Patent number: 8760753
    Abstract: The present invention relates to a device (12) and to a method for amplifying light impulses (13). The device comprises a stretcher (15) stretching the light impulses over time, at least one amplifier (16) amplifying the stretched light impulses, and a compressor (17) compressing the stretched and amplified light impulses, wherein the amplifier (16) applies a non-linear phase generated by self-phase modulation to the stretched light impulses. In order to provide a device and a method for amplifying light impulses, by means of which light impulses having higher light impulse quality and light impulse peak power can be generated, the invention proposes that means for spectrally shaping the light impulses are disposed ahead of the amplifier (16) in the beam path, wherein the means for spectrally shaping the light impulses bring about a spectral trimming of the light impulses.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 24, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Limpert, Enrico Seise, Damian Schimpf, Fabian Roeser, Andreas Tuennermann
  • Patent number: 8708508
    Abstract: An adaptive mirror that includes a substrate layer, on the first surface of which a reflecting layer and on the second surface of which at least one actuator is disposed. The substrate layer has a thickness of less than or equal to 1,000 ?m and the mirror having at least one further metallization for thermal compensation, as a result of which a thermal deformation of the mirror is avoided or preadjusted such that the desired curvature is set as a function of the reflected power.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 29, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Schiller Universitaet Jena
    Inventors: Claudia Bruchmann, Erik Beckert, Thomas Peschel, Christoph Damm, Sylvia Gebhardt
  • Publication number: 20140112612
    Abstract: The invention relates to an apparatus for generating azimuthally or radially polarized radiation by means of an optical waveguide (1), wherein the optical waveguide (1) has a structure which is suitable for conducting azimuthally or radially polarized modes (5, 7). The invention proposes that the azimuthally or radially polarized modes (5, 7) in the optical waveguide (1) have different effective refractive indices and, within the optical waveguide (1), a narrow-band grating (2) is arranged, in particular a fibre Bragg grating (2) which is designed such that the spectral distance between two azimuthally or radially polarized resonant modes (5, 7) is equal to or greater than the associated spectral bandwidth.
    Type: Application
    Filed: April 14, 2011
    Publication date: April 24, 2014
    Applicant: FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Andreas Tuennermann, Christoph Jocher, César Jauregui Misas, Jens Limpert
  • Publication number: 20140083597
    Abstract: The invention relates to a method of joining substrates. It is the object of the invention in this respect to join substrates of substrate materials together without having to exert an increased effort for a coating with additional coating processes to be carried out and to be able to achieve a good quality of the join connection in so doing. In the method in accordance with the invention a pretreatment of at least one join surface of a substrate to be joined is carried out in low pressure oxygen plasma prior to the actual joining. On the joining, a contact force acts on the substrates to be joined in the range 2 kPa to 5 MPa and in this process a heat treatment is carried out at an elevated temperature of at least 100° C. and at under pressure conditions of a maximum of 10 mbar, preferably <10?3 mbar.
    Type: Application
    Filed: February 21, 2012
    Publication date: March 27, 2014
    Applicants: Friedrich-Schiller-Universität Jena, FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V.
    Inventors: Gerhard Kalkowski, Carolin Rothhardt, Mathias Rohde, Ramona Eberhardt
  • Patent number: 8659821
    Abstract: The present invention relates to a device (1, 11) for amplifying light pulses (2, 12), the device comprised of a stretcher (4, 14) which temporally stretches the light pulses (2, 12), and comprised of at least one amplifier (5, 15) which amplifies the stretched light pulses (2, 12), and comprised of a compressor (6, 16) which recompresses the stretched and amplified light pulses (2, 12), the stretcher (4, 14) and the compressor (6, 16) being dispersive elements with essentially oppositely identical dispersion. To provide a device (1, 11) for amplifying light pulses (2, 12) which is of a compact setup and which can be flexibly applied, the present invention proposes that the dispersion of the amplifier (5, 15), the dispersion of further optical elements of the device (1) and/or a mismatch of dispersion of the stretcher (4, 14) and compressor (6, 16) are at least partly compensated by self-phase modulation of the light pulses (2, 12) and/or by at least one additional element (17) of variable dispersion.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 25, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V., Friedrich-Schiller-Universitaet Jena
    Inventors: Damian Schimpf, Jens Limpert, Andreas Tuennermann
  • Publication number: 20140010246
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Application
    Filed: November 22, 2011
    Publication date: January 9, 2014
    Applicants: Friedrich-Schiller-Universitaet Jena, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Publication number: 20140002890
    Abstract: The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.
    Type: Application
    Filed: December 19, 2011
    Publication date: January 2, 2014
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: César Jauregui Misas, Andreas Tuennermann, Jens Limpert, Dirk Nodop
  • Publication number: 20140002893
    Abstract: The invention relates to a fiber amplifier system for amplifying and emitting pulsed radiation, having a master source (1) which emits pulsed output radiation, and at least one amplifier stage (4), which is arranged after the master source (1) in the direction of radiation, and which amplifies the output radiation. The aim of the invention is to provide a fiber amplifier system for amplifying and emitting pulsed radiation which avoids stimulated Brillouin scattering as effectively as possible and at the same time can be produced simply and inexpensively. To this end, the output radiation emitted by the master source (1) is broadband and is generated substantially by means of spontaneous emission.
    Type: Application
    Filed: November 25, 2011
    Publication date: January 2, 2014
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Dirk Nodop, Jens Limpert, Andreas Tuennermann
  • Publication number: 20130235448
    Abstract: The invention relates to an optical amplifier arrangement for amplifying ultra-short pulsed laser radiation comprising a mode-locked laser (1) and two or more optical amplifiers (3) arranged downstream of the laser (1) in the propagation direction of the laser radiation. Optical amplifier arrangements of this type are known in the prior art. Here the intention is to present an alternative to the known amplifier arrangements. The invention proposes arranging between the laser (1) and the optical amplifiers (3) at least one splitting element (2) which splits the pulsed laser radiation between a plurality of amplifier channels (4), wherein each amplifier channel (4) has at least one optical amplifier (3), and wherein at least one common combination element (5) is disposed downstream of the amplifier channels (4) and coherently superimposes the pulsed laser radiation amplified in the amplifier channels (4).
    Type: Application
    Filed: August 29, 2011
    Publication date: September 12, 2013
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Arno Klenke, Enrico Seise, Jens Limpert, Andreas Tuennermann
  • Patent number: 8480243
    Abstract: The invention relates to an adaptive mirror based on a ceramic substrate having a corresponding reflector and piezoelectric actuators, a cooling device being integrated in the substrate. The invention likewise relates to a method for the production of such mirrors. The mirrors according to the invention are used for the modulation or deformation of a laser wavefront of high power.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 9, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerferung der Angewandten E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Claudia Bruchmann, Erik Beckert, Thomas Peschel, Christoph Damm
  • Publication number: 20130083814
    Abstract: The invention relates to a laser system with a passively Q-switched laser 1, a spectrally widening element 3, and a compression element 4. Laser systems of this kind are utilized for generating ultra-short laser pulses. Systems, mode-coupled solid-state lasers known from prior art allow for generating laser pulses in the sub-10 ps range only with complicated and alignment-sensitive free-beam arrangements. Therefore, it is the object of the present invention to create a laser system that generates pulse durations of less than 10 ps and which is simple and compact to produce at the same time. In order to achieve this object, the present invention proposes that the passively Q-switched laser 1 is provided with a longitudinally monomode output radiation which is spectrally widened by means of the spectrally widening element 3 by self-phase modulation and is temporally compressed by the compression element 4.
    Type: Application
    Filed: April 13, 2011
    Publication date: April 4, 2013
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Dirk Nodop, Alexander Steinmetz, Jens Limpert, Andreas Tuennermann
  • Publication number: 20120237162
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Application
    Filed: September 15, 2010
    Publication date: September 20, 2012
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN, FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann
  • Publication number: 20120229888
    Abstract: The invention relates to a laser device (1) for amplifying and/or transporting electromagnetic radiation, comprising a radiation source (2) for generating the electromagnetic radiation and an amplifier (4) for amplifying or a medium for transporting the generated electromagnetic radiation. In order to make available a device (1) for amplifying or transporting electromagnetic radiation that provides a very easy to implement possibility for reducing the influence of non-linear effects, the electromagnetic radiation propagating in the amplifier (4) or medium is largely non-linearly polarized.
    Type: Application
    Filed: July 9, 2010
    Publication date: September 13, 2012
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITAET JENA, FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Jens Limpert, Andreas Tuennermann, Damian Schimpf, Tino Eidam, Enrico Seise, Fabian Roeser
  • Patent number: 8217136
    Abstract: New thieno[3,4-b]pyrazine copolymers are prepared by reacting 5,7-functionalized thieno[3,4-b]pyrazines with substituted aromatics in the presence of solvents, bases and polymerization catalysts, the copolymers thus prepared being employed preferably in the production of photovoltaic cells.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: July 10, 2012
    Assignees: Thüringisches Institut für Textil-und Kunststoff-Forschung E.V., Friedrich Schiller Universität Jena
    Inventors: Steffi Sensfuss, Maher Al Ibrahim, Lars Blankenburg, Elisabeth Klemm, Raja Shahid Ashraf, Munazza Shahid
  • Publication number: 20120069428
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Application
    Filed: March 12, 2010
    Publication date: March 22, 2012
    Applicants: FRIEDRICH-SCHILLER-UNIVERSITÄT JENA, FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Publication number: 20120050843
    Abstract: The present invention relates to a device (12) and to a method for amplifying light impulses (13). The device comprises a stretcher (15) stretching the light impulses over time, at least one amplifier (16) amplifying the stretched light impulses, and a compressor (17) compressing the stretched and amplified light impulses, wherein the amplifier (16) applies a non-linear phase generated by self-phase modulation to the stretched light impulses. In order to provide a device and a method for amplifying light impulses, by means of which light impulses having higher light impulse quality and light impulse peak power can be generated, the invention proposes that means for spectrally shaping the light impulses are disposed ahead of the amplifier (16) in the beam path, wherein the means for spectrally shaping the light impulses bring about a spectral trimming of the light impulses.
    Type: Application
    Filed: December 23, 2009
    Publication date: March 1, 2012
    Applicants: Friedrich-Schiller-Universitaet Jena, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Jens Limpert, Enrico Seise, Damian Schimpf, Fabian Roeser, Andreas Tuennermann
  • Publication number: 20110242646
    Abstract: The present invention relates to a device (1, 11) for amplifying light pulses (2, 12), the device comprised of a stretcher (4, 14) which temporally stretches the light pulses (2, 12), and comprised of at least one amplifier (5, 15) which amplifies the stretched light pulses (2, 12), and comprised of a compressor (6, 16) which recompresses the stretched and amplified light pulses (2, 12), the stretcher (4, 14) and the compressor (6, 16) being dispersive elements with essentially oppositely identical dispersion. To provide a device (1, 11) for amplifying light pulses (2, 12) which is of a compact setup and which can be flexibly applied, the present invention proposes that the dispersion of the amplifier (5, 15), the dispersion of further optical elements of the device (1) and/or a mismatch of dispersion of the stretcher (4, 14) and compressor (6, 16) are at least partly compensated by self-phase modulation of the light pulses (2, 12) and/or by at least one additional element (17) of variable dispersion.
    Type: Application
    Filed: September 11, 2009
    Publication date: October 6, 2011
    Applicants: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Damian Schimpf, Jens Limpert, Andreas Tuennermann
  • Patent number: 7914158
    Abstract: An optical element is provided with a fog reducing polymer layer. A reflection reducing nanostructure is formed on the surface of the fog reducing polymer layer.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 29, 2011
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Ulrike Schulz, Irmina Wendling, Peter Munzert, Norbert Kaiser