Patents Assigned to Friedrich-Schiller-Universitaet Jena
  • Publication number: 20170233760
    Abstract: Biologically active nucleotide molecules are configured, with the nucleotide sequence thereof, to be able to trigger several, in particular a plurality of “off-target” effects to cause cell-killing stress by means of binding of same, by means of which off-target effects cells are so massively influenced that the cells die off or programmed cell death (apoptosis) is induced in the cells.
    Type: Application
    Filed: January 20, 2012
    Publication date: August 17, 2017
    Applicant: FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Tobias POEHLMANN, Rolf GUENTHER
  • Patent number: 9517009
    Abstract: A method for non-invasive observations of a fundus using an ophthalmoscope is provided. The method includes illuminating a retinal region of an eye by projecting an illumination pattern of illumination light onto the retinal region, at least one of detecting a portion of fluorescent light emitted from the retinal region and detecting a portion of illumination light reflected from the retinal region, thereby capturing a series of images of the retinal region at a plurality of different relative positions of the retinal region with respect to the illumination pattern projected onto the retinal region, wherein between the capturing of at least two images of the series the relative position of the retinal region with respect to the illumination pattern projected onto the retinal region is shifted in a non-controlled manner, and processing the captured images to extract a sub-resolution image of the retinal region.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 13, 2016
    Assignees: Ruprecht-Karls-Universität Heidelberg, Friedrich-Schiller-Universität Jena
    Inventors: Christoph Cremer, Gerrit Best, Roman Amberger, Rainer Heintzmann, Stefan Dithmar, Thomas Ach
  • Patent number: 9484709
    Abstract: The invention relates to an optical amplifier arrangement for amplifying ultra-short pulsed laser radiation comprising a mode-locked laser (1) and two or more optical amplifiers (3) arranged downstream of the laser (1) in the propagation direction of the laser radiation. Optical amplifier arrangements of this type are known in the prior art. Here the intention is to present an alternative to the known amplifier arrangements. The invention proposes arranging between the laser (1) and the optical amplifiers (3) at least one splitting element (2) which splits the pulsed laser radiation between a plurality of amplifier channels (4), wherein each amplifier channel (4) has at least one optical amplifier (3), and wherein at least one common combination element (5) is disposed downstream of the amplifier channels (4) and coherently superimposes the pulsed laser radiation amplified in the amplifier channels (4).
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 1, 2016
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Arno Klenke, Enrico Seise, Jens Limpert, Andreas Tuennermann
  • Patent number: 9459403
    Abstract: The invention relates to an apparatus for generating azimuthally or radially polarized radiation by means of an optical waveguide (1), wherein the optical waveguide (1) has a structure which is suitable for conducting azimuthally or radially polarized modes (5, 7). The invention proposes that the azimuthally or radially polarized modes (5, 7) in the optical waveguide (1) have different effective refractive indices and, within the optical waveguide (1), a narrow-band grating (2) is arranged, in particular a fiber Bragg grating (2) which is designed such that the spectral distance between two azimuthally or radially polarized resonant modes (5, 7) is equal to or greater than the associated spectral bandwidth.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: October 4, 2016
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Andreas Tuennermann, Christoph Jocher, César Jauregui Misas, Jens Limpert
  • Patent number: 9448359
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: September 20, 2016
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Publication number: 20160193362
    Abstract: Cell-specifically active nucleotide molecules and application kit for the use thereof. The problem to be solved was to modify long molecules in such a way that, by chemical modifications, their biological function is reliably inactivated and can be completely reactivated in a cell-specific manner. According to the invention several peptides or polymers are bound to nucleotide molecules in such a way that theft spatial structure is modified to to such a degree that their biological function is no longer ensured or that molecules which normally anneal to the nucleic acids can no longer access the nucleic acids. Said molecules are used in particular for cell-specifically influencing cells by introduction of nucleic acids.
    Type: Application
    Filed: November 14, 2013
    Publication date: July 7, 2016
    Applicant: Friedrich-Schiller-Universitaet Jena
    Inventors: Tobias POEHLMANN, Rolf GUENTHER
  • Patent number: 9347060
    Abstract: Biologically active molecules are inactivated for selective activation by target cells by being covalently bonded to one or more peptides each of which has one or more specific amino acid sequences that are selected in respect of enzymes cell-specific for target cells. The bonds, which are broken exclusively by the enzymes cell-specific for the target cells in order to biologically activate the molecules, allow the molecules to remain biologically inactive in cells other than the target cells. The molecules are used for influencing gene expression of preferably sick and infected organs or cells, for example.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: May 24, 2016
    Assignee: Friedrich-Schiller-Universitaet Jena
    Inventors: Tobias Poehlmann, Lydia Seyfarth
  • Patent number: 9315808
    Abstract: A biologically inactivated cell-specifically effective molecule for biologically inactive transfection into a target cell to inhibit expression of genes in the target cell after biological activation of the molecule, by bonding to mRNA and with the formation of a RISC complex, the biologically inactivated cell-specifically effective molecule comprising siRNA coupled with at least one peptide via a linker which remains at the siRNA after biological activation of the molecule, the linker comprising an amino Cn linker wherein n is an integer of 1-6. Kits include the molecule or the constituents thereof and transfection reagents in ampoules and injection equipment for injecting mixtures of the ampoule contents into a medium containing a target cell.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 19, 2016
    Assignee: Friedrich-Schiller-Universitaet Jena
    Inventors: Tobias Poehlmann, Diana Imhof, Sandra Koehn
  • Patent number: 9296161
    Abstract: The invention relates to a method for producing an optical assembly, comprising at least two optical functional surfaces arranged in a fixed positional relationship to one another on a common supporting structure, wherein by means of a processing machine, in various process steps, at least two optical functional surfaces and at least one reference structure having a defined and measurable relative position to the optical functional surfaces are produced. The supporting structure remains rigidly connected to the processing machine until said process steps have been completed, and wherein the optical functional surfaces are then measured relative to the at least one reference structure, and any deviation from a target shape and target position is determined, after which said process steps are repeated at least once with modified actuation of the processing machine. The invention further relates to an optical device comprising an optical assembly produced in this way and to a unit for carrying out such a method.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 29, 2016
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Schiller-Universität Jena
    Inventors: Sebastian Scheiding, Stefan Risse, Andreas Gebhardt, Christoph Damm, Thomas Peschel, Ralf Steinkopf
  • Publication number: 20160025924
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 28, 2016
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens LIMPERT, Fabian ROESER, Tino EIDAM, César JÁUREGUI MISAS, Andreas TUENNERMANN
  • Patent number: 9233430
    Abstract: The invention relates to a mounted optical component and also a method for the production of mounted optical components. Furthermore, the invention relates to the use of mounted optical components.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 12, 2016
    Assignees: FRAUHNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Erik Beckert, Christoph Damm, Thomas Burkhardt, Marcel Hornaff
  • Patent number: 9235106
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 12, 2016
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 9170368
    Abstract: The invention relates to an optical fiber as an optical waveguide for the single-mode operation. The present invention proposes a fiber having a microstructure, by which the propagation of modes of a higher order are selectively suppressed in the optical waveguide. At the same time, the propagation of transversal modes of a higher order is dampened more strongly than the propagation of the fundamental modes of the optical waveguide.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 27, 2015
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FRIEDRICH-SCHILLER-UNIVERSITAET JENA
    Inventors: Jens Limpert, Fabian Roeser, Tino Eidam, César Jáuregui Misas, Andreas Tuennermann
  • Patent number: 9065245
    Abstract: The invention relates to a double-sheath fiber having a core region (1) and a sheath region, the sheath region having an inner region (2) and an outer region (3), which comprises a refractive index that is lower with respect to that of the inner region (2) and the core region (1), wherein the outer region (3) surrounds the inner region (2). The invention proposes an internal structure (4) of the inner region (2) which effects a spatial overlap of modes of higher order with the core region (1), which is lower than the spatial overlap of a fundamental mode with the core region (1).
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 23, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: César Jauregui Misas, Fabian Stutzki, Jens Limpert, Florian Jansen, Andreas Tuennermann
  • Patent number: 9057928
    Abstract: The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 16, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: César Jauregui Misas, Andreas Tuennermann, Jens Limpert, Dirk Nodop
  • Patent number: 8982453
    Abstract: The invention relates to a laser device (1) for amplifying and/or transporting electromagnetic radiation, comprising a radiation source (2) for generating the electromagnetic radiation and an amplifier (4) for amplifying or a medium for transporting the generated electromagnetic radiation. In order to make available a device (1) for amplifying or transporting electromagnetic radiation that provides a very easy to implement possibility for reducing the influence of non-linear effects, the electromagnetic radiation propagating in the amplifier (4) or medium is largely non-linearly polarized.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 17, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Limpert, Andreas Tuennermann, Damian Schimpf, Tino Eidam, Enrico Seise, Fabian Roeser
  • Publication number: 20150063767
    Abstract: The invention relates to a method and corresponding devices for reducing mode instability in an optical waveguide (1), a light signal becoming unstable in the optical waveguide (1) beyond an output power threshold and energy being transformed from a basic mode into higher order modes. The invention proposes a reduction in temperature variation (2) along the optical waveguide (1) and/or a reduction in changes in the optical waveguide (1) that are caused by spatial temperature variation as a result of mode interference.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 5, 2015
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V., FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
    Inventors: César Jáuregui Misas, Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Jens Limpert, Andreas Tünnermann
  • Patent number: 8948219
    Abstract: The invention relates to a laser system with a passively Q-switched laser 1, a spectrally widening element 3, and a compression element 4. Laser systems of this kind are utilized for generating ultra-short laser pulses. Systems, mode-coupled solid-state lasers known from prior art allow for generating laser pulses in the sub-10 ps range only with complicated and alignment-sensitive free-beam arrangements. Therefore, it is the object of the present invention to create a laser system that generates pulse durations of less than 10 ps and which is simple and compact to produce at the same time. In order to achieve this object, the present invention proposes that the passively Q-switched laser 1 is provided with a longitudinally monomode output radiation which is spectrally widened by means of the spectrally widening element 3 by self-phase modulation and is temporally compressed by the compression element 4.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: February 3, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Dirk Nodop, Alexander Steinmetz, Jens Limpert, Andreas Tuennermann
  • Publication number: 20140362878
    Abstract: The invention relates to a mode filter for reducing higher-order modes, with an optical fibre (1), which has a core (2) and a cladding (3) surrounding the latter, wherein the cladding (3) and core (2) have refractive indices that differ from one another. In order to develop an alternative to the prior art, the mode filter according to the invention is designed in such a manner that the fibre (1) has, in a transition region (4) between core (2) and cladding (3), at least one local refractive index modification region (5) which is arranged in the radially outer region of the core (2) and extends into the region of the cladding (3).
    Type: Application
    Filed: September 27, 2012
    Publication date: December 11, 2014
    Applicants: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Christian Voigtlaender, Jens Ulrich Thomas, Robert Williams, Stefan Nolte, Andreas Tuennermann
  • Patent number: 8891917
    Abstract: The invention relates to a transverse mode filter in an optical waveguide (3). The aim of the invention is to produce a transverse mode filter that permits a monolithic construction of a laser in a multi-mode waveguide. To achieve this, according to the invention the filter comprises a Fabry-Perot cavity integrated into the optical waveguide (3) and comprising two reflective elements (5) situated at a distance from one another. In addition, the waveguide (3) is modified in the region of the Fabry-Perot cavity and/or in the region of the reflective elements (5) in relation to the remaining regions of the waveguide with respect to the effective refractive index of at least one mode of the waveguide.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Ulrich Thomas, Christian Voigtlaender, Stefan Nolte, César Jáuregui Misas, Fabian Stutzki, Jens Limpert, Andreas Tuennermann