Patents Assigned to Fujitsu Semiconductor Limited
  • Patent number: 9953974
    Abstract: An integrated circuit can include a plurality of first transistors formed in a substrate and having gate lengths of less than one micron and at least one tipless transistor formed in the substrate and having a source-drain path coupled between a circuit node and a first power supply voltage. In addition or alternatively, an integrated circuit can include minimum feature size transistors; a signal driving circuit comprising a first transistor of a first conductivity type having a source-drain path coupled between a first power supply node and an output node, and a second transistor of a second conductivity type having a source-drain path coupled between a second power supply node and the output node, and a gate coupled to a gate of the first transistor, wherein the first or second transistor is a tipless transistor.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: April 24, 2018
    Assignee: MIE Fujitsu Semiconductor Limited
    Inventor: David A. Kidd
  • Patent number: 9947575
    Abstract: A multilayer wiring in a semiconductor device includes a first lower wiring formed in a first insulating layer, a via which is formed in a second insulating layer over the first insulating layer and which is connected to the first lower wiring, and an upper wiring connected to the via. The upper wiring has an outer edge at which a nick portion is formed beside a portion of the upper wiring to which the via is connected. The formation of the nick portion at the outer edge of the upper wiring prevents the via from enlarging.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 17, 2018
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yasunori Uchino, Kenichi Watanabe
  • Publication number: 20180102373
    Abstract: A semiconductor device includes: a semiconductor substrate; a ferroelectric capacitor above the semiconductor substrate; a first guard ring around the ferroelectric capacitor above the semiconductor substrate. The ferroelectric capacitor includes a bottom electrode, a capacitor insulating film and a top electrode. The first guard ring includes a first pseudo bottom electrode, a first pseudo capacitor insulating film and a first pseudo top electrode, and surrounds the ferroelectric capacitors in planar view.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Naoya SASHIDA, Tatsuya SUGIMACHI
  • Patent number: 9935097
    Abstract: A semiconductor integrated circuit apparatus and a manufacturing method for the same are provided in such a manner that a leak current caused by a ballast resistor is reduced, and at the same time, the inconsistency in the leak current is reduced. The peak impurity concentration of the ballast resistors is made smaller than the peak impurity concentration in the extension regions, and the depth of the ballast resistors is made greater than the depth of the extension regions.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: April 3, 2018
    Assignee: MIE FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Katsuyoshi Matsuura, Junichi Ariyoshi
  • Patent number: 9922977
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT (variation in VT) compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. A novel dopant profile indicative of a distinctive notch enables tuning of the VT setting within a precise range. This VT set range may be extended by appropriate selection of metals of a gate electrode material so that a very wide range of VT settings is accommodated on the die. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low ?VT) and VDD (the operating voltage supplied to the transistor), so that the body bias can be tuned separately from VT for a given device.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: March 20, 2018
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Reza Arghavani, Pushkar Ranade, Lucian Shifren, Scott E. Thompson, Catherine de Villeneuve
  • Patent number: 9917092
    Abstract: A method of manufacturing a semiconductor device includes: forming an insulating film above a semiconductor substrate; forming a conductive film on the insulating film; forming a dielectric film on the conductive film; forming a plurality of upper electrodes at intervals on the dielectric film; forming a first protective insulating film on the upper electrodes and the dielectric film by a sputtering method; forming a second protective insulating film on the first protective insulating film by an atomic layer deposition method, thereby filling gaps of a grain boundary of the dielectric film with the second protective insulating film; and patterning the conductive film after the second protective insulating film is formed to provide a lower electrode.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: March 13, 2018
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Youichi Okita, Hideki Ito, Wensheng Wang
  • Patent number: 9911076
    Abstract: A rectification circuit has a first terminal to which an alternating-current voltage is input from an antenna, a second terminal to which a direct-current voltage is input from the antenna, a first rectification element, a second rectification element, and a voltage rectification circuit. The first rectification element is connected between the first terminal and the second terminal, causes a current to flow in a first direction from the first terminal to the second terminal, and cuts off a current in a second direction from the second terminal to the first terminal. The second rectification element is connected between the first terminal and the second terminal, causes a current to flow in the second direction, and cuts off a current in the first direction. The voltage rectification circuit outputs a rectified voltage obtained by rectifying a voltage that is input between the first terminal and the second terminal.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 6, 2018
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Koji Nozoe
  • Patent number: 9893148
    Abstract: A transistor device with a tuned dopant profile is fabricated by implanting one or more dopant migrating mitigating material such as carbon. The process conditions for the carbon implant are selected to achieve a desired peak location and height of the dopant profile for each dopant implant, such as boron. Different transistor devices with similar boron implants may be fabricated with different peak locations and heights for their respective dopant profiles by tailoring the carbon implant energy to effect tuned dopant profiles for the boron.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: February 13, 2018
    Assignee: MIE Fujitsu Semiconductor Limited
    Inventors: Teymur Bakhishev, Sameer Pradhan, Thomas Hoffmann, Sachin R. Sonkusale
  • Patent number: 9881246
    Abstract: In a semiconductor device that generates a power supply voltage from an RF carrier signal received by an antenna through the use of a rectification circuit, rectification circuits, each including a plurality of capacitors and a plurality of diodes, are connected in multistage. The rectification circuits includes limiter circuits that are turned on at a voltage larger than an on-voltage of the diodes, clamp cathodes of the diodes at a first voltage. The limiter circuits and the diodes are connected in parallel between the capacitors connected to the antenna connection terminal and a node supplied reference potential VSS of the power supply voltage.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: January 30, 2018
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Akihiko Sugata, Kohji Nozoe, Tsuzumi Ninomiya, Shinya Fujioka
  • Patent number: 9865596
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: January 9, 2018
    Assignee: MIE Fujitsu Semiconductor Limited
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Publication number: 20180006563
    Abstract: A regulator circuit includes a first transistor reducing an external supply voltage and outputting an internal active voltage to an output node; a first detector receiving a criteria level, detecting the internal active voltage based on an enable signal, controlling a gate voltage of the first transistor, and adjusting an output current thereof; a second transistor reducing the external supply voltage, and outputting an internal standby voltage corresponding to the internal active voltage to the output node; a second detector receiving a reference voltage, detecting the internal standby voltage regardless of the enable signal, controlling a gate voltage of the second transistor, and adjusting an output current thereof; a first switch controlling whether to output the reference voltage as the criteria level of the first detector; and a second switch controlling whether to output the voltage of the output node as the criteria level of the first detector.
    Type: Application
    Filed: May 31, 2017
    Publication date: January 4, 2018
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Atsushi Nakakubo
  • Patent number: 9853019
    Abstract: A system having an integrated circuit (IC) device can include a die formed on a semiconductor substrate and having a plurality of first wells formed therein, the first wells being doped to at least a first conductivity type; a global network configured to supply a first global body bias voltage to the first wells; and a first bias circuit corresponding to each first well and configured to generate a first local body bias for its well having a smaller setting voltage than the first global body bias voltage; wherein at least one of the first wells is coupled to a transistor having a strong body coefficient formed therein, which transistor may be a transistor having a highly doped region formed below a substantially undoped channel, the highly doped region having a dopant concentration greater than that the corresponding well.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 26, 2017
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, David A. Kidd, Augustine Kuo
  • Publication number: 20170365528
    Abstract: A semiconductor device includes a transistor configuration including first and second gate electrodes, each of the first and second gate electrodes having at least a bottom layer and an upper layer including polycrystalline silicon grains, wherein the first gate electrode is a nMOS gate electrode formed in an nMOS region of the transistor configuration, wherein the polycrystalline silicon grains included in the bottom layer of the first gate electrode have a greater particle diameter than the polycrystalline grains included in the upper layer of the second gate electrode.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Hiroyuki Ohta, Mitsugu Tajima
  • Patent number: 9838012
    Abstract: Digital circuits are disclosed that may include multiple transistors having controllable current paths coupled between first and second logic nodes. One or more of the transistors may have a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region. Resulting reductions in threshold voltage variation may improve digital circuit performance. Logic circuit, static random access memory (SRAM) cell, and passgate embodiments are disclosed.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 5, 2017
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Scott E. Thompson, Lawrence T. Clark
  • Patent number: 9830241
    Abstract: A method of monitoring thread execution within a multicore processor architecture which comprises a plurality of interconnected processor elements for processing the threads, the method comprising receiving a plurality of thread parameter indicators of one or more parameters relating to the function and/or identity and/or execution location of a thread or threads, comparing at least one of the thread parameter indicators with a first plurality of predefined criteria each representative of an indicator of interest, and generating an output consequential upon thread parameter indicators which have been identified to be of interest as a result of the said comparison.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: November 28, 2017
    Assignees: Synopsys, Inc., Fujitsu Semiconductor Limited
    Inventors: Mark David Lippett, Ayewin Oung
  • Patent number: 9825171
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: November 21, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Patent number: 9818701
    Abstract: A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: November 14, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Kazutaka Yoshizawa, Taiji Ema, Takuya Moriki
  • Patent number: 9812497
    Abstract: A lower conductive film is formed over a substrate. A first insulating film is formed in the lower conductive film. An opening which reaches the lower conductive film is formed in the first insulating film. An MTJ multilayer film having a magnetization free layer, a tunnel barrier layer and a magnetization fixed layer is deposited over the lower conductive film in the opening and over the first insulating film. An upper electrode is formed over the MTJ multilayer film. By removing the portion of the MTJ multilayer film deposited over the first insulating film, an MTJ device composed of the portion of the MTJ multilayer film which has remained in the opening is formed. A lower electrode composed of the lower conductive film is formed under the MTJ device by removing at least a part of the first insulating film, and a part of the lower conductive film.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 7, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Akiyoshi Hatada
  • Patent number: 9812894
    Abstract: A power switching circuit includes a current mirror circuit to generate mirror currents, by transferring, at different mirror ratios, monitored currents that are obtained by monitoring power supply voltages, a selector to select the mirror currents with a combination having the different mirror ratios for the monitored currents, according to a switching state of the power supply voltages, a comparator to compare the mirror currents selected by the selector and output a comparison result, and a switching circuit to switch a supply voltage to be supplied to a load to one of the power supply voltages, based on the comparison result.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 7, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Satoshi Yamada
  • Patent number: 9812550
    Abstract: A semiconductor structure includes first, second, and third transistor elements each having a first screening region concurrently formed therein. A second screening region is formed in the second and third transistor elements such that there is at least one characteristic of the screening region in the second transistor element that is different than the second screening region in the third transistor element. Different characteristics include doping concentration and depth of implant. In addition, a different characteristic may be achieved by concurrently implanting the second screening region in the second and third transistor element followed by implanting an additional dopant into the second screening region of the third transistor element.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 7, 2017
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Dalong Zhao, Teymur Bakhishev, Lance Scudder, Paul E. Gregory, Michael Duane, U. C. Sridharan, Pushkar Ranade, Lucian Shifren, Thomas Hoffmann