Patents Assigned to Furukawa-Sky Aluminum Corp.
  • Publication number: 20160002754
    Abstract: An aluminum alloy connector which is excellent in extrusion property and sacrificial anode property, the connector being extruded in a hollow shape from an aluminum alloy extrusion material consisting of 0.2 to 0.8% (hereinafter, “%” means “mass %”) of Si, 0.45 to 0.9% of Mg, 1.0 to 3.5% of Zn, 0.001 to 0.2% of Ti and the balance of Al plus unavoidable impurities. An electric potential of said aluminum alloy extrusion connector is lower than an electric potential of a pipe member made of an Al—Mg—Si series alloy or an Al—Mn series alloy which is to be swaged to the connector, by 100 mV or more.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Applicants: FURUKAWA-SKY ALUMINUM CORP., DENSO AIR SYSTEMS CORPORATION, DENSO CORPORATION
    Inventors: Satoshi WAKAGURI, Akira ICHINOSE, Toshiyuki KAKINOKI, Tatsuhito MATSUMOTO
  • Patent number: 9216468
    Abstract: Provided are: a method for brazing an aluminum alloy, which is characterized in that brazing is carried out by heating an aluminum brazing sheet without using flux in a furnace that is in an argon gas-containing atmosphere, said aluminum brazing sheet comprising a core material that is composed of aluminum or an aluminum alloy and a brazing filler material that is composed of an aluminum alloy and clad on one surface or both surfaces of the core material, and said core material and/or said brazing filler material containing Mg; and a brazing apparatus which is used in the method for brazing an aluminum alloy. The brazing method has good and stable brazing properties and is applicable in industrial practice.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 22, 2015
    Assignees: Kanto Yakin Kogyo Co., Ltd., Furukawa-Sky Aluminum Corp.
    Inventors: Kiichi Kanda, Kenichi Watanabe, Yutaka Yanagawa
  • Patent number: 9174303
    Abstract: A method of bonding two members including an aluminum alloy material as one member, and an aluminum alloy material or a pure aluminum material as the other member, the method being characterized in: that the aluminum alloy material for the one member and the aluminum alloy material for the other member are composed of an aluminum alloy containing Mg of not more than 0.5 mass %; and that a bonding process is carried out in a furnace having a non-oxidizing atmosphere at a temperature, at which a ratio of a mass of liquid phases generated in the aluminum alloy material defined as the one member to the total mass of the aluminum alloy material falls within a range from 5% to 35%, on the condition that there is either a coated fluoride-based flux or a coated chloride-based flux between both of the members to be bonded.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 3, 2015
    Assignee: Furukawa-sky Aluminum Corp.
    Inventors: Takashi Murase, Kazuko Fujita, Akio Niikura
  • Patent number: 9095934
    Abstract: An aluminum alloy brazing sheet having a good brazing property that prevents diffusion of molten filler material in a core material of the aluminum alloy brazing sheet during a brazing process and which has a superior corrosion resistance to an exhaust gas condensate water after the brazing process is disclosed. A method of manufacturing of the aluminum alloy brazing sheet also is disclosed. A high corrosion-resistant heat exchanger that employs the aluminum alloy brazing sheet also is disclosed.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 4, 2015
    Assignees: Denso Corp., Furukawa-Sky Aluminum Corp.
    Inventors: Sadayuki Kamiya, Masaki Harada, Masafumi Saito, Taketoshi Toyoma, Makoto Ando, Yoshiyuki Oya, Akio Niikura, Yoichi Kojima
  • Publication number: 20140064830
    Abstract: A metal member 1 and a resin member 2 are brought into contact with each other without interposing a resin layer between the metal member 1 and the resin member 2. A rotation tool 10, which is being rotated, is pressed against the surface 1a of the metal member 1 in an inclined state so that the inclination angle ? of the axis Q of the rotation tool 10 relative to the normal line P of the surface 1a of the metal member 1 satisfies the condition of 0°<??5°. This applies friction energy to the metal member 1 to join the metal member 1 and the resin member 2.
    Type: Application
    Filed: February 17, 2012
    Publication date: March 6, 2014
    Applicants: SHOWA DENKO K.K., OSAKA UNIVERSITY, FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Yoshitaka Nagano, Toshiya Okada, Kazuhiro Nakata
  • Publication number: 20130302676
    Abstract: It is an object to provide an aluminum alloy foil for an electrode current collector, the foil having a high post-drying strength after application of an active material while keeping a high electrical conductivity. Disclosed is an aluminum alloy foil for an electrode current collector, comprising 0.1 to 1.0 mass % (hereinafter, “mass %” is simply referred to as “%”) of Fe, 0.01 to 0.5% of Si, and 0.01 to 0.2% of Cu, with the rest consisting of Al and unavoidable impurities, wherein the aluminum alloy foil after final cold rolling has a tensile strength of 220 MPa or higher, a 0.2% yield strength of 180 MPa or higher, and an electrical conductivity of 58% IACS or higher; and the aluminum ally foil has a tensile strength of 190 MPa or higher and a 0.2% yield strength of 160 MPa or higher even after the aluminum alloy foil is subjected to heat treatment at any of 120° C. for 24 hours, 140° C. for 3 hours, and 160° C. for 15 minutes.
    Type: Application
    Filed: December 12, 2011
    Publication date: November 14, 2013
    Applicants: NIPPON FOIL MFG. CO., LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Masakazu Seki, Satoshi Suzuki, Tomohiko Furutani, Kenji Yamamoto, Koichi Ashizawa
  • Publication number: 20130269842
    Abstract: It is an object to provide an aluminum alloy foil for an electrode current collector, the foil having a high post-drying strength after application of an active material while keeping a high electrical conductivity. Disclosed is an aluminum alloy foil for an electrode current collector, comprising 0.03 to 0.1 mass % (hereinafter, “mass %” is simply referred to as “%”) of Fe, 0.01 to 0.1% of Si, and 0.0001 to 0.01% of Cu, with the rest consisting of Al and unavoidable impurities, wherein the aluminum alloy foil after final cold rolling has a tensile strength of 180 MPa or higher, a 0.2% yield strength of 160 MPa or higher, and an electrical conductivity of 60% IACS or higher; and the aluminum alloy foil has a tensile strength of 170 MPa or higher and a 0.2% yield strength of 150 MPa or higher even after the aluminum alloy foil is subjected to heat treatment at any of 120° C. for 24 hours, 140° C. for 3 hours, and 160° C. for 15 minutes.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 17, 2013
    Applicants: NIPPON FOIL MFG. CO., LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Masakazu Seki, Satoshi Suzuki, Tomohiko Furutani, Kenji Yamamoto, Koichi Ashizawa
  • Publication number: 20130221077
    Abstract: Provided are: a method for brazing an aluminum alloy, which is characterized in that brazing is carried out by heating an aluminum brazing sheet without using flux in a furnace that is in an argon gas-containing atmosphere, said aluminum brazing sheet comprising a core material that is composed of aluminum or an aluminum alloy and a brazing filler material that is composed of an aluminum alloy and clad on one surface or both surfaces of the core material, and said core material and/or said brazing filler material containing Mg; and a brazing apparatus which is used in the method for brazing an aluminum alloy. The brazing method has good and stable brazing properties and is applicable in industrial practice.
    Type: Application
    Filed: October 26, 2011
    Publication date: August 29, 2013
    Applicants: FURUKAWA-SKY ALUMINUM CORP., KANTO YAKIN KOGYO CO., LTD.
    Inventors: Kiichi Kanda, Kenichi Watanabe, Yutaka Yanagawa
  • Publication number: 20130206822
    Abstract: A method of bonding two members including an aluminum alloy material as one member, and an aluminum alloy material or a pure aluminum material as the other member, the method being characterized in: that the aluminum alloy material for the one member and the aluminum alloy material for the other member are composed of an aluminum alloy containing Mg of not more than 0.5 mass %; and that a bonding process is carried out in a furnace having a non-oxidizing atmosphere at a temperature, at which a ratio of a mass of liquid phases generated in the aluminum alloy material defined as the one member to the total mass of the aluminum alloy material falls within a range from 5% to 35%, on the condition that there is either a coated fluoride-based flux or a coated chloride-based flux between both of the members to be bonded.
    Type: Application
    Filed: June 6, 2011
    Publication date: August 15, 2013
    Applicant: FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Takashi Murase, Kazuko Fujita, Akio Niikura
  • Patent number: 8500926
    Abstract: An aluminum alloy material for high-temperature/high-speed molding containing 2.0 to 8.0 mass % of Mg, 0.05 to 1.0 mass % of Mn, 0.01 to 0.3 mass % of Zr, 0.06 to 0.4 mass % of Si and 0.06 to 0.4 mass % of Fe, with the balance being made of aluminum and inevitable impurities; an aluminum alloy material for high-temperature/high-speed molding containing 2.0 to 8.0% of Mg, 0.05 to 1.5% of Mn and 0.05 to 0.4% of Cr, Fe being restricted to 0.4% or less and Si being restricted to 0.4% or less, the grain diameter of a Cr-base intermetallic compound formed by melt-casting being 20 ?m or less, and grains of intermetallic compounds with a grain diameter in the range from 50 to 1,000 nm as Mn-base and Cr-base precipitates being present in a distribution density of 350,000 grains/mm2 or more, the aluminum alloy material being used for high-temperature/high-speed molding by subjecting the alloy material to cooling at a cooling rate of 20° C./min or more immediately after molding at a temperature range from 200 to 550° C.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 6, 2013
    Assignees: Furukawa-Sky Aluminum Corp, Nippon Steel & Sumitomo Metal Corporation
    Inventors: Koji Ichitani, Tsutomu Tagata, Toshio Komatsubara, Ken Takata
  • Publication number: 20130164170
    Abstract: An object of the present invention is to provide a 6000-series aluminum alloy material for a high-pressure gas container which has both of resistance to hydrogen embrittlement and mechanical properties. In the aluminum alloy material for a high-pressure gas container, the contents of Fe, Mn and Cu fall within narrower ranges than the standard composition of AA6066 alloy. The aluminum alloy material is produced to have a structure in which a predetermined amount of fine dispersed particles are dispersed therein and coarse crystallized materials are small, and therefore strength and resistance to hydrogen embrittlement are improved, which are required for a high-pressure gas container.
    Type: Application
    Filed: March 17, 2011
    Publication date: June 27, 2013
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.), MITSUBISHI ALUMINUM COMPANY, LTD., SHOWA DENKO K.K., NIPPON LIGHT METAL COMPANY, LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Manabu Nakai, Shigenobu Yasunaga
  • Patent number: 8454766
    Abstract: An extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature, containing from 3 to 6% by mass of Cu and from 0.9 to 3% by mass of Bi with the balance being Aluminum and inevitable impurities, wherein a temperature for reducing the Charpy impact test value to half of the value at room temperature is 180° C. or more.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 4, 2013
    Assignee: Furukawa-Sky Aluminum Corp.
    Inventors: Kensuke Mori, Kazuo Taguchi
  • Patent number: 8273196
    Abstract: An Al—Mg—Si based aluminum alloy sheet having undergone normal-temperature aging (or being in a underaged state) after a solution treatment thereof is, before press forming, subjected to a heating treatment (partial reversion heating treatment) in which the alloy sheet is partially heated to a temperature in the range of 150 to 350° C. for a time of not more than 5 minutes so that the difference in strength (difference in 0.2% proof stress) between the heated part and the non-heated part will be not less than 10 MPa. The alloy sheet thus treated is subjected to cold press forming in the condition where the heated part with low strength is put in contact with a wrinkle holding-down appliance of the press and the non-heated part with high strength is put in contact with the shoulder part (radius) of the punch. In the partial reversion heating treatment, the temperature rise rate and the cooling rate in cooling down to 100° C. or below are set to be not less than 30° C./min.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 25, 2012
    Assignee: Furukawa-Sky Aluminum Corp.
    Inventors: Akira Hibino, Koji Ichitani
  • Patent number: 8263908
    Abstract: A heater plate may be manufactured by receiving a sheath heater within a groove portion formed in a base member made of aluminum or aluminum alloy. At least one joint member made of aluminum or aluminum alloy may be placed into the groove portion so as to fix the sheath heater in the groove portion. The joint member may have two correspondingly tapered portions facing each other which extend toward a lower end thereof such that a distance between the two tapered portions becomes narrower and a width of a surface portion contacting with the sheath heater in the joint member is larger than a width of the sheath heater. The base member and the joint member may be metal-bonded such that a force is added from an upper surface of the base member toward the sheath heater direction, wit the sheath heater fixed in place therebetween.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: September 11, 2012
    Assignee: Furukawa-Sky Aluminum Corp.
    Inventors: Katsumi Watanabe, Akira Fukuchi
  • Publication number: 20120134875
    Abstract: An aluminum alloy sheet for a lithographic printing plate which has excellent ink stain resistance, with a local defect in a photosensitive layer after long-term storage being hard to occur, and excellent the pit uniformity after a roughening and a manufacturing method thereof are provided. An aluminum alloy sheet for a lithographic printing plate containing a predetermined content of Fe, Si, Cu and Ti as well as one type or more selected from B and C, and composed of remaining Al and inevitable impurities, in which a concentration of an aluminum carbide present in the aluminum alloy sheet is not more than 8 ppm, an area occupancy of aggregation substances present on the aluminum alloy sheet surface after the roughening treatment with respect to an arbitrary circle with a radius 5 ?m in the aluminum alloy sheet surface is less than 10%. In a case where the area occupancy is not less than 10%, the aggregation substances are present at a rate of 1 to 2 pieces/50 cm2.
    Type: Application
    Filed: September 1, 2011
    Publication date: May 31, 2012
    Applicants: Furukawa-Sky Aluminum Corp., Fujifilm Corporation
    Inventors: Yusuke Namba, Shinya Kurokawa, Hirokazu Sawada, Akio Uesugi, Hirotake Osuga, Yoshikazu Suzuki, Kotaro Kitawaki
  • Publication number: 20120132400
    Abstract: The present invention provides a heat sink having improved heat-exchange. A heat sink (10) which transfers heat dissipated from a heat generating device (12) to a cooling fluid (CF), said heat sink comprises: a planar base plate portion (11) that is thermally connected to the heat generating device (12); and a fin unit (10A) having a plurality of louvers (13) and a frame portion (14) that connects to the plurality of louvers and surrounds thereof. One edge of said plurality of louvers is thermally connected to the base plate portion; and said frame portion is situated apart from a principal surface of said base plate portion.
    Type: Application
    Filed: August 3, 2010
    Publication date: May 31, 2012
    Applicant: FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Toshiyuki Hosokawa, Seizo Ueno
  • Publication number: 20120129003
    Abstract: An aluminum alloy brazing sheet having a core material of an aluminum alloy, and a filler material cladded on the core is disclosed. The core material is an aluminum alloy having about 0.05 to about 1.2 mass Si, about 0.05-about 1.0 mass % Fe, about 0.05-about 1.2 mass % Cu, and about 0.6-about 1.8 mass % Mn, balance Al and the inevitable impurities. The filler material includes an aluminum alloy having about 2.5-about 13.0 mass % Si. Also, there is provided a method of manufacturing such an aluminum alloy brazing sheet.
    Type: Application
    Filed: September 20, 2011
    Publication date: May 24, 2012
    Applicant: Furukawa-Sky Aluminum Corp.
    Inventors: Makoto Ando, Akio Niikura, Yoichiro Bekki
  • Patent number: 8142907
    Abstract: An aluminum alloy brazing sheet having high strength comprising: a core alloy; an Al—Si-based filler alloy cladded on one side or both sides of the core alloy, wherein the core alloy is composed of an aluminum alloy containing 0.3-1.2% (mass %, the same applies the below) Si, 0.05-0.4% Fe, 0.3-1.2% Cu, 0.3-1.8% Mn, 0.05-0.6% Mg, and containing one or more elements selected from the group consisting of 0.02-0.3% Ti, 0.02-0.3% Zr, 0.02-0.3% Cr and 0.02-0.3% V, the balance of Al and unavoidable impurities; and wherein, after the aluminum alloy brazing sheet is subjected to brazing, the core alloy features a metallic structure in which a density of intermetallic compounds having a grain diameter of at least 0.1 ?m is at most ten grains per ?m2.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 27, 2012
    Assignees: Furukawa-sky Aluminum Corp, Denso Corporation
    Inventors: Atsushi Fukumoto, Hiroshi Kano, Akio Niikura, Yoichiro Bekki, Kenji Negura, Tatsuo Ozaki, Toshihide Ninagawa, Keiichi Okazaki
  • Patent number: 8119222
    Abstract: A pre-coated metal sheet for slot-in drive cases which has a metal sheet; chemical conversion coatings formed on both sides of the metal sheet; and a coating film formed on one of the chemical conversion coatings and containing at least one base resin selected from a polyester-series resin, an epoxy-series resin and an acrylic-series resin, at least one resin beads selected from nylon-series resin beads, fluorine-series resin beads and urethane-series resin beads, and at least one lubricant a3 selected from carnauba wax, polyethylene wax and microcrystalline wax. The coating film has a surface having an arithmetical mean deviation of the assessed profile Ra of 0.3 to 4.5 ?m and a mean width of the profile elements, RSm, of 105 to 280 ?m, and the ratio of mean particle diameter of the resin beads to coating film layer thickness of the coating film is in the range of 2.0 to 3.0.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: February 21, 2012
    Assignee: Furukawa-sky Aluminum Corp.
    Inventors: Takehiro Ozawa, Masatsugu Saito
  • Patent number: 8096120
    Abstract: A movable mechanism having: a fixed body (1); a movable body (4); and a driving member (2), one end of which is attached to the fixed body and the other end of which is attached to the movable body, for changing the position of the movable body, wherein the driving member (2) is composed of a shape restorable material, and the movable body (4) is moved by shape restorability of the driving member (2) that has been released movable body (4) from being fixed.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: January 17, 2012
    Assignee: Furukawa-Sky Aluminum Corp.
    Inventor: Kenichi Ogura