Patents Assigned to General Electric Company
  • Patent number: 10072889
    Abstract: The subject matter disclosed herein relates to a liquefaction system. Specifically, the present disclosure relates to systems and methods for condensing a pressurized gaseous working fluid, such as natural gas, using at least one turboexpander in combination with other cooling devices and techniques. In one embodiment, a turboexpander may be used in combination with a heat exchanger using vapor compression refrigeration to condense natural gas.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Vitali Victor Lissianski, Douglas Carl Hofer, Roger Allen Shisler, Nikolett Sipoecz, Xianyun Bi
  • Patent number: 10073060
    Abstract: A method for inspecting an additive manufacturing process in which a directed energy source is used to create a weld pool at an exposed build surface of a mass of powdered material, and selectively fuse the powdered material to form a workpiece. The inspection method includes: using a noncontact method to generate an acoustic wave in the build surface; using a noncontact method to measure displacement of the build surface in response to the acoustic wave; and determining at least one sub-surface material property of the workpiece by analyzing the displacement of the build surface.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: MacKenzie Ryan Redding, Scott Alan Gold, Thomas Graham Spears
  • Patent number: 10072846
    Abstract: A gas turbine engine and combustor assembly including a combustor liner defining therein a combustion chamber for the downstream flow of a main fluid. At least two axially spaced apart annular trapped vortex cavities are located on the combustor liner and staged axially and radially spaced apart. A cavity opening is located at a radially inner end of each of the at least two annular trapped vortex cavities. A plurality of injectors are configured tangentially relative to circular radially outer wall extending between an aft wall and a forward wall of each cavity to provide for an injection of air and fuel to form an annular rotating trapped vortex of a fuel and air mixture within a respective annular trapped vortex cavity. The annular rotating trapped vortex of the fuel and air mixture at the cavity openings is substantially perpendicular to the downstream flow of the main fluid.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 11, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sarah Marie Monahan, Narendra Digamber Joshi, Venkat Eswarlu Tangirala, Matthieu Marc Masquelet
  • Patent number: 10073062
    Abstract: A system includes a probe assembly configured to inspect components of an assembled flange connection when the probe assembly is disposed within a bore of the components. The probe assembly includes a shaft configured to be aligned with an axis of the assembled flange connection, one or more ultrasound probes coupled to the shaft, and one or more encoders. The one or more ultrasound probes are configured to interface with an interior surface of the bore of the components, to emit ultrasound signals into the components, and to receive ultrasound signals from the components. The one or more encoders are coupled to the shaft and are configured to determine a position of the one or more ultrasound probes relative to a reference point of the assembled flange connection during an inspection of components of the assembled flange connection.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 11, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Manuel Kenneth Bueno, Robert Martin Roney, Jr., Willis James Perry, Robert Charles Shaffer, Richard Michael Hatley
  • Patent number: 10071532
    Abstract: The present disclosure is directed to a method of assembling a modular rotor blade of a wind turbine. The method includes identifying a main blade structure, constructed at least in part, from at least one of a thermoset or a thermoplastic material. The method also includes identifying at least one blade segment, constructed at least in part, of a thermoplastic material reinforced with at least one of glass fibers or carbon fibers. Thus, the method also includes securing the at least one blade segment to the main blade structure, e.g. via welding.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10073512
    Abstract: A power converter includes primary and secondary bridges, a transformer, and a controller configured to generate a switching mode map that correlates each of a plurality of switching modes to a respective set of value ranges of system parameters of the power converter. The sets of system parameter value ranges are contiguous and non-overlapping across the switching mode map, each of the plurality of switching modes includes gate trigger voltage timings for commuting at least one of the primary and secondary bridges. The controller is configured to obtain a plurality of measured system parameter values, select from the switching mode map one of the plurality of switching modes that correlates to the set of system parameter values containing the plurality of measured system parameter values, and adjust gate trigger voltage timings of at least one of the primary and secondary bridges, according to the selected switching mode.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Simon Herbert Schramm, Said Farouk Said El-Barbari, Stefan Schroeder, Zhihui Yuan
  • Patent number: 10076055
    Abstract: In one embodiment, the system includes one or more electrical components associated with turbomachinery, and the one or more electrical components are disposed within two or more interior compartments of an electrical enclosure. The system also includes a cooling system coupled to the electrical enclosure. The cooling system includes one or more air ducts configured to direct a cooling air to each interior compartment of the two or more interior compartments. The cooling system also includes a controller configured to route cooling air to each interior compartment via the one or more air ducts. The controller is configured to independently regulate a thermal environment for each interior compartment of the two or more interior compartments.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Quoc Hoai Nguyen, Nam Tran, Justin Benden
  • Patent number: 10070805
    Abstract: A patient monitoring system includes a sensing device configured to measure physiological parameter data from a patient, an identification transmitter that transmits an identification signal, wherein the identification signal is associated with the patient, and a location tracking system having a plurality of identification receivers arranged in a care facility that receive the identification signal from the identification transmitter and determine a patient location within the care facility based on a location of receipt of the identification signal. The patient monitoring system further includes a contextual alarming module that receives the patient location and selects at least one location-specific alarm rule based on the patient location in the care facility. Physiological parameter data is then assessed by the patient monitoring system based on the location-specific alarm rule.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Bruce Friedman, Matthew Grubis, Scott Fuller, Eliana Stein, Magnus Kall, Stephen Treacy, Peter Arndt
  • Patent number: 10071811
    Abstract: A gas turbine engine includes a compressor section and a turbine section together defining a core air flowpath. Additionally, a rotary component is rotatable with at least a portion of the compressor section and at least a portion of the turbine section. An electric machine is mounted coaxially with the rotary component and positioned at least partially inward of the core air flowpath along a radial direction of the gas turbine engine. An electric communication bus is electrically connected to the electric machine and extends through the core air flowpath to, e.g., electrically connect the electric machine to one or more systems of the gas turbine engine or a propulsion system including the gas turbine engine.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Thomas Kupiszewski, Brandon Wayne Miller, Randy M. Vondrell, Paul Robert Gemin
  • Patent number: 10072582
    Abstract: An in-line propeller gearbox of a turboprop gas turbine engine includes a lubricant reservoir disposed spaced radially offset from the engine's central axis of rotation and asymmetrically with respect to the central axis of rotation such that the central axis of rotation does not extend through the lubricant reservoir.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventor: Mark Gregory Wotzak
  • Patent number: 10075056
    Abstract: A method for power conversion includes coupling a first string to a second string via a first connecting node and a second connecting node to form at least one leg of a power converter. The first string is operatively coupled across a first bus and a second bus and comprises a first branch and a second branch coupled via a third connecting node. The first branch and the second branch include a plurality of controllable semiconductor switches. Furthermore, the second string comprises a first chain link and a second chain link coupled via an alternating current phase bus and includes a plurality of switching units. The first chain link and/or the second chain link are controlled to generate a negative voltage across at least one of the plurality of controllable semiconductor switches during a switch turn off process.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: September 11, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Di Zhang, Luis Jose Garces, Andrew Allen Rockhill
  • Patent number: 10075114
    Abstract: The present subject matter is directed to a system and method for operating an electrical power circuit connected to a power grid. The electrical power circuit has a power converter electrically coupled to a generator. The method includes monitoring a rotor speed of the generator during operation of the electrical power circuit. The method also includes increasing an operating range of the rotor speed of the generator. Further, the method includes determining at least one of a line-side voltage of a line-side converter of the power converter or a rotor-side voltage of a rotor-side converter of the power converter during operation of the electrical power circuit. Another step include controlling, via a converter controller, a DC link voltage of a DC link of the power converter as a function of one or more of the line-side voltage, the rotor-side voltage, and/or the rotor speed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Harold Robert Schnetzka, Anthony Michael Klodowski, Sidney Allen Barker
  • Patent number: 10074038
    Abstract: Methods and apparatus to automatically generate an image quality metric for an image are provided. An example method includes automatically processing a first medical image using a deployed learning network model to generate an image quality metric for the first medical image, the deployed learning network model generated from a digital learning and improvement factory including a training network, wherein the training network is tuned using a set of labeled reference medical images of a plurality of image types, and wherein a label associated with each of the labeled reference medical images indicates a central tendency metric associated with image quality of the image. The example method includes computing the image quality metric associated with the first medical image using the deployed learning network model by leveraging labels and associated central tendency metrics to determine the associated image quality metric for the first medical image.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Jiang Hsieh, Gopal Avinash, Saad Sirohey, Xin Wang, Zhye Yin, Bruno De Man
  • Publication number: 20180250666
    Abstract: Disclosed is biomanufacturing apparatus (1) comprising a housing (20), a substantially enclosed bioreactor chamber (30) inside the housing and a further substantially enclosed region (36) inside the housing containing electrical parts and/or electronic control components, the chamber (30) including: a tray (40) for supporting a bioreactor, a tray support (45) including a mechanism (44,47) for rocking the tray in use the tray (40) including a heater (42) for contacting a bioreactor and heating the same, and the apparatus further comprising secondary heating (53) for heating air surrounding the tray.
    Type: Application
    Filed: August 25, 2016
    Publication date: September 6, 2018
    Applicant: General Electric Company
    Inventors: Praveen Paul, Manoj Ramakrishna, Anoop Bhargav, Haresh Digambar Patil, Sebastian John, Manish Uddhaorao Choudhary, Pradeep Kumar, Nivedita Phadke
  • Publication number: 20180251722
    Abstract: Disclosed is a biomanufacturing apparatus (1) comprising a housing (20) including top (22) and bottom (24) faces which allow stacking of plural housings, an access door (25) at a front side of the housing, a substantially enclosed bioreactor chamber (30) inside the housing accessible via the door, and a further substantially enclosed region (36) inside the housing containing electrical parts and/or electronic control components, the chamber (30) including: a tray (40/240) for supporting a bioreactor, a tray support (45/245) including a mechanism (44,47/244,247) for rocking the tray in use; the tray having complementary formations allowing movement of tray relative to the tray support toward the front side to allow more convenient access to the bioreactor.
    Type: Application
    Filed: August 25, 2016
    Publication date: September 6, 2018
    Applicant: General Electric Company
    Inventors: Haresh Digambar PATIL, Anoop BHARGAV, Praveen PAUL, Sebastian JOHN
  • Publication number: 20180251715
    Abstract: Disclosed is biomanufacturing apparatus 1 comprising a housing 20 including top 22 and bottom 24 faces which allow stacking of plural housings, an access door 25 at a front side of the housing, a substantially enclosed bioreactor chamber 30 inside the housing accessible via the door, and a further substantially enclosed region 36 inside the housing containing electrical parts and/or electronic control components, the chamber 30 including: a tray 40 for supporting a bioreactor, a tray support 45 including a mechanism 44,47 for rocking the tray in use; the tray support further including a load cell (41) to determine changes in the mass load on the tray.
    Type: Application
    Filed: August 25, 2016
    Publication date: September 6, 2018
    Applicant: General Electric Company
    Inventors: Praveen Paul, Manoj Ramakrishna, Anoop Bhargav, Haresh Digambar Patil, Sebastian John, Manish Uddhaorao Choudhary, Pradeep Kumar, Nivedita Phadke
  • Patent number: 10066505
    Abstract: The present disclosure is directed to a gas-lubricated bearing assembly for a gas turbine engine and method of damping same. The bearing assembly includes a bearing pad for supporting a rotary component and a bearing housing attached to or formed integrally with the bearing pad. The bearing housing includes a first fluid damper cavity, a second fluid damper cavity in restrictive flow communication with the first fluid damper cavity via a restrictive channel configured as a clearance gap, and a damper fluid configured within the first and second fluid damper cavities. More specifically, the damper fluid of the present disclosure is configured to withstand the high temperature environment of the engine. Thus, the bearing housing is configured to transfer the damper fluid from the first fluid damper cavity to the second fluid damper cavity via the restrictive channel in response to a force acting on the bearing pad.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: September 4, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bugra Han Ertas, Joshua Tyler Mook, Jason Joseph Bellardi
  • Patent number: 10066604
    Abstract: A method for optimizing a hybrid wind system including a wind farm having a plurality of wind turbines and one or more energy storage units, is presented. The method includes acquiring actual wind power data associated with one or more dispatch windows. The method includes determining forecasted wind farm power estimates corresponding to the dispatch windows using a plurality of forecast schemes. The method includes computing difference values by comparing the forecasted wind farm power estimates to the actual wind power data. The method includes identifying a wind power forecast scheme based at least in part on the computed difference values and balancing a penalty to the grid with life consumption of the energy storage units while regulating the wind turbines and the energy storage units based at least in part on a subsequent forecasted wind farm power estimate generated using the identified wind power forecast scheme.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: September 4, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dipankar Deb, Akshay Krishnamurty Ambekar, Deepak Raj Sagi
  • Patent number: 10066601
    Abstract: The present disclosure is directed to systems and methods for manufacturing a wind turbine rotor blade that can be easily lifted and lowered to and from a rotor installed atop a tower. The method includes providing a plurality of root inserts for a blade root of the blade and securing at least one cylindrical member to one of the root inserts such that the cylindrical member is substantially perpendicular with the root insert. The method also includes arranging the root inserts in a blade mold of the blade and forming a blade shell with the plurality of root inserts laminated therein. The method may further include securing at least one attachment component within each of the cylindrical members so as to provide an attachment location for a pulley cable used to lift and lower the rotor blade to and from the rotor installed atop the tower.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: September 4, 2018
    Assignee: General Electric Company
    Inventor: Ulrich Werner Neumann
  • Patent number: 10066630
    Abstract: A fan assembly is provided. The fan assembly includes a fan, a fan casing circumscribing the fan, and a fan casing heating system in thermal communication with the fan casing. The fan includes a hub, and a plurality of fan blades extending from the hub. Each fan blade of the plurality of fan blades terminates at a respective blade tip. A clearance gap is defined between the fan casing and the blade tips. The fan casing heating system is configured to apply heat to the fan casing when the fan is operating in a first operational mode, and remove the applied heat when the fan transitions into a second operational mode.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: September 4, 2018
    Assignee: General Electric Company
    Inventors: Hemanth Gudibande Sathyakumar Kumar, Bhaskar Nanda Mondal, Thomas Ory Moniz