Patents Assigned to Georgia Tech Research Corporation
  • Patent number: 11446634
    Abstract: Methods of making a poly(propylenimine) (PPI) sorbent, a PPI sorbent, structures including the PPI sorbent, methods of separating CO2 using the PPI sorbent, and the like, are disclosed.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 20, 2022
    Assignees: Georgia Tech Research Corporation, Global Thermostat Operations, LLC
    Inventors: Simon H. Pang, Christopher W. Jones, Li-Chen Lee, Miles A. Sakwa-Novak, Michele Sarazen
  • Patent number: 11447870
    Abstract: Embodiments of the present disclosure relates generally to methods of providing biomimetic superhydrophobic coatings to substrates, and more specifically to providing biomimetic inorganic silica or silane-based coatings that enable tunable hierarchical surface structures with high coating-to-substrate adhesion, resistance to various mechanical abradents, durability, shelf stability, and enhanced non-wettability or water-repellency.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 20, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Cornelia Rosu, Laurens Victor Breedveld, Dennis W. Hess
  • Patent number: 11433138
    Abstract: An embodiment of the present disclosure can include a nanocarrier for delivering a cargo to a cell comprising: a bundle domain and a binding domain, the binding domain configured to bind to the cargo. An embodiment of the present disclosure can include a method for delivering a cargo to a cell comprising: introducing an amino-acid based nanocarrier to the cell, the nanocarrier can comprise an alpha-helical protein bundle domain and a binding domain, the cargo can bound to the binding domain and the cargo can be therapeutic cargo.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 6, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Julie Champion, Sung In Lim, Anshul Dhankher
  • Patent number: 11433353
    Abstract: Methods and systems for the separation of hydrogen isotopes from one another are described. Methods include utilization of a hydrogen isotope selective separation membrane that includes a hydrogen isotope selective layer (e.g., graphene) and a hydrogen ion conductive supporting layer. An electronic driving force encourages passage of isotopes selectively across the membrane at an elevated separation temperature to enrich the product in a selected hydrogen isotope.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: September 6, 2022
    Assignees: Savannah River Nuclear Solutions, LLC, Clemson University Research Foundation, Georgia Tech Research Corporation
    Inventors: Dale A. Hitchcock, Steven M. Serkiz, Timothy M. Krentz, Josef A. Velten, Kyle S. Brinkman, Eric M. Vogel, Katherine T. Young
  • Patent number: 11431780
    Abstract: Aspects of the subject disclosure may include, for example, selecting a first video service model according to a server hostname determined according to transport layer security (TLS) transaction data associated with a video session transmitted over a network, calculating a plurality of data delivery statistics from the TLS transaction data according to the first video service model, where the plurality of data delivery statistics includes session-level statistics over the video session, transaction-level statistics over each transaction, and temporal feature statistics over intervals of the video session, determining a quality of experience (QoE) metric for the video session from the plurality of data delivery statistics according to a course-grained data QoE model, and adjusting a first network element of the network responsive to the determining the QoE metric for the video session. Other embodiments are disclosed.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: August 30, 2022
    Assignees: AT&T Intellectual Property I, L.P., GEORGIA TECH RESEARCH CORPORATION
    Inventors: Emir Halepovic, Tarun Mangla, Ellen Zegura, Mostafa Ammar
  • Patent number: 11424084
    Abstract: Systems, devices, and methods disclosed herein can generally include electrical contacts for high voltage, high current, and/or fast acting electromechanical switches and methods for manufacturing the same. The electrical contacts can be optimized for high voltage blocking capabilities with minimal gap spacing in the open state and low electrical resistance when in contact in the closed state. Electrical contacts can have a geometry to produce a low peak electric field between the contacts when in the open state, have a high contact surface area when in the closed state, and a low mass. The geometry of the contacts can be based on geometries traditionally utilized for uniform field electrodes.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: August 23, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Lukas Graber, Tushar Damle, Gyu Cheol Lim
  • Patent number: 11419948
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: August 23, 2022
    Assignees: Georgia Tech Research Corporation, University of Virginia Patent Foundation, North Carolina State University
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch, John Nicosia
  • Patent number: 11421095
    Abstract: Various methods of reshaping and recycling thermoset polymers and composites containing thermoset polymers are provided. The methods involve the bond exchange reaction of exchangeable covalent bonds in the polymer matrix with a suitable small molecule solvent in the presence of a catalyst. In some aspects, the methods are applied to a carbon fiber reinforced polymer or a thermoset polymer where the thermoset polymer matrix includes a plurality of ester bonds. Using a small molecule alcohol, the methods provide for recycling one or both of the carbon fiber and the polymer, for welding two surfaces, or for repairing a damaged surface in the materials.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 23, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Hang Qi, Kai Yu, Qian Shi, Xiao Kuang
  • Publication number: 20220249369
    Abstract: Disclosed herein are protease-based biological circuits for use in the diagnosis and treatment of disease and disorders characterized by aberrant protease signaling. An exemplary method of treating disease in a subject includes administering to the subject a plurality of therapeutic agent loaded-liposomes, wherein each of the liposomes comprises a different density of peptides surrounding the core and a different dose of the therapeutic agent, wherein the peptides comprise a cleavage site for a protease of interest, and wherein cleavage of the peptides open the liposome and release the therapeutic agent from within the liposome.
    Type: Application
    Filed: September 19, 2019
    Publication date: August 11, 2022
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Brandon HOLT, Gabriel KWONG
  • Patent number: 11397381
    Abstract: In a method making a flexible electrical conductor, a mask layer (216) is applied to a substrate (210). A portion of the mask layer (216) is removed to expose the substrate (210) in an exposed shape (220) corresponding to the conductor. A liquid phase conductor (232) is applied to the portion of the substrate (210). The mask layer (216) is dissolved with a solvent (238) to leave a shaped liquid phase conductor (234) corresponding to the exposed shape on the substrate (210). A primary elastomer layer (240) is applied onto the substrate (210) and the shaped liquid phase conductor (234). The primary elastomer layer (240) and the shaped liquid phase conductor (234) are removed from the substrate (210). A secondary elastomer layer (242) is applied to the shaped liquid phase conductor (234) and the primary elastomer layer (240) to seal the shaped liquid phase conductor (234) therein.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 26, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Mingu Kim, Oliver Brand, Devin K. Brown
  • Publication number: 20220230948
    Abstract: The present disclosure describes semiconductor packages and, more particularly, chip-embedded semiconductor packages. The packages include core panels with apertures extending through the core panel. Semiconductor chips are embedded within chip apertures. A molding compound can be positioned along one side of the core panel. In some examples, the semiconductor chips are embedded within the molding compound. In other examples, the semiconductor chips are adhered to the molding compound. The coefficient of thermal expansion (CTE) values of the core panels described herein can be tailored to decrease warpage of the package as the semiconductor chip heats during use.
    Type: Application
    Filed: February 26, 2020
    Publication date: July 21, 2022
    Applicants: GEORGIA TECH RESEARCH CORPORATION, NAGASE & CO., LTD.
    Inventors: Nobuo OGURA, Siddharth RAVICHANDRAN, Venkatesh V. SUNDARAM, Rao R. TUMMALA
  • Patent number: 11389084
    Abstract: A portable electronic device including: a plurality of sensors configured to generate, in response to a first contact with a body of a user in a vicinity of the portable electronic device, one or more first input signals; a microprocessor; and a memory having stored thereon instructions that, when executed by the microprocessor, control the microprocessor to execute, in response to an analysis of the one or more first input signals indicating that the first contact corresponds to a first gesture, and by the microprocessor, a first command corresponding to the first gesture.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 19, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Cheng Zhang, Gregory D. Abowd, Omer Inan, Thad Eugene Starner
  • Patent number: 11392831
    Abstract: Systems and methods for decoding code-multiplexed Coulter signals are described herein. An example method can include receiving a code-multiplexed signal detected by a network of Coulter sensors, where the code-multiplexed signal includes a plurality of distinct Coulter signals, and inputting the code-multiplexed signal into a deep-learning network. The method can also include determining information indicative of at least one of a size, a speed, or a location of a particle detected by the network of Coulter sensors by using the deep-learning network to process the code-multiplexed signal. The method can further include storing the information indicative of at least one of the size, the speed, or the location of the particle detected by the network of Coulter sensors.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: July 19, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Ali Fatih Sarioglu, Ningquan Wang
  • Publication number: 20220223839
    Abstract: In an embodiment, an active material-based nanocomposite is synthesized by infiltrating an active material precursor into pores of a nanoporous carbon, metal or metal oxide material, and then annealing to decompose the active material precursor into a first gaseous material and an active material and/or another active material precursor infiltrated inside the pores. The nanocomposite is then exposed to a gaseous material or a liquid material to at least partially convert the active material and/or the second active material precursor into active material particles that are infiltrated inside the pores and/or to infiltrate a secondary material into the pores. The nanocomposite is again annealed to remove volatile residues, to enhance electrical contact within the active material-based nanocomposite composite and/or to enhance one or more structural properties of the nanocomposite. In a further embodiment, the pores may be further infiltrated with a filler material and/or may be at least partially sealed.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: Georgia Tech Research Corporation
    Inventors: Gleb YUSHIN, Danni LEI
  • Patent number: 11384198
    Abstract: Embodiments of the invention are directed to yellow/orange-to-transmissive conjugated polymers, a method to prepare the yellow/orange conjugated polymers, and an electrochromic and/or electroluminescent device comprising the neutral state yellow/orange conjugated polymers as one of a plurality of primary subtractive colored conjugated polymers. The yellow/orange conjugated polymers show enhanced redox stability and can have a (D2Arz)n structure with a dioxyheterocycle repeating unit or a (DArz)n structure with a dioxythiophene monomer that has at least one substituted carbon ? to an oxygen of the monomer; and where the one to three Ar groups have at least one carbon ? to the carbon attached to a D unit substituted that has at least 5 atoms in the substituent. The yellow/orange conjugated polymers show enhanced redox stability. The yellow/orange conjugated polymers are prepared by cross-condensation reactions.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 12, 2022
    Assignee: GEORGIA TECH RESEARCH CORPORATION
    Inventors: John Robert Reynolds, Kangli Cao, Anna M. Osterholm, Dwanleen E. Shen, Dylan Thomas Christiansen
  • Patent number: 11381426
    Abstract: Systems and methods are provided for enabling lower-bandwidth hardware components to support higher data rates. In particular, aspects of the disclosed systems and methods use Raised Cosine pulse shaping in short-reach links to band limit the signal spectra and thereby enable existing, such lower-bandwidth components to support higher data rates.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 5, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Siddharth Jacob Varughese, Joseph Justin Lavrencik, Stephen E. Ralph, Varghese Antony Thomas
  • Patent number: 11378495
    Abstract: Methods, systems, and devices that takes advantage of the unique fluid dynamics involved when oscillating flow across a sensor or sensor array. A time-variant source of information about an agent(s) of interest being sensored is established. This source of information is used in machine learning algorithms to speed up the time and accuracy of agent classification and identification.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: July 5, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Thomas Spencer, David Hu, Alexander B. Lee
  • Patent number: 11378679
    Abstract: A system produces sensed images. The system includes a sensor array, an image display device, and a processor that generates an image illustrating contents of an expanded field of view. The processor receives sensor element data from the sensor array, performs zero padding and discrete Fourier transform to result in a sensor wavenumber data buffer. The processor determines reference point locations, and generates a reference Fresnel field. The processor obtains an inverse Huygens-Fresnel transfer data buffer based on the reference Fresnel field. The processor multiplies each data element of the sensor wavenumber buffer with each corresponding data element of the inverse Huygens-Fresnel transfer data buffer. The processor generates a rectilinear spectrum data buffer based on the multiplication. The processor performs Stolt mapping and uniformly resampling to achieve image data.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 5, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Christopher Floyd Barnes, Skanda Prasad Ponnathpur Nagendra
  • Publication number: 20220199987
    Abstract: Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Applicant: Georgia Tech Research Corporation
    Inventors: Gleb YUSHIN, Oleksandr MAGAZYNSKYY, Patrick DIXON, Benjamin HERTZBERG
  • Patent number: 11365336
    Abstract: In order to provide a thermally conductive polymer-based resin that may be molded using a range of thermoplastic manufacturing techniques, a composition includes a thermoplastic polymer and/or elastomer, a polymer fiber, a binding agent, and a thermally conductive filler. The composition includes from 40 to 80 volume percentage of a thermoplastic polymer and/or a thermoplastic elastomer, from 5 to 30 volume percentage of a polymer fiber, from 0.1 to 20 volume percentage of a binding agent, and from 10 to 40 volume percentage of a thermally conductive filler. The polymer fibers and thermally conductive fillers are combined to create a hybrid thermally conductive particle for better feeding in standard plastic processing methods. The polymer fiber has an aspect ratio greater than 10. The filler has a thermal conductivity greater than or equal to 10 W/m-K. The composition is characterized by a thermal conductivity of at least 1 W/m-K.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 21, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Thomas L. Bougher, Matthew K. Smith, Baratunde Cola, Kyriaki Kalaitzidou