Patents Assigned to Great Power Semiconductor Corp.
  • Patent number: 9214531
    Abstract: A trenched power semiconductor device with enhanced breakdown voltage is provided. The trenched power semiconductor device has a first trench penetrating the body region located between two neighboring gate trenches. A polysilicon structure with a conductivity type identical to that of the body region is located in a lower portion of the first trench and spaced from the body region with a predetermined distance. A dielectric structure is located on the polysilicon structure and at least extended to the body region. Source regions are located in an upper portion of the body region. A heavily doped region located in the body region is extended to the bottom of the body region. A conductive structure is electrically connected to the heavily doped region and the source region.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 15, 2015
    Assignee: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: Chun-Ying Yeh
  • Patent number: 8975691
    Abstract: A trenched power semiconductor device with enhanced breakdown voltage is provided. The trenched power semiconductor device has a first trench penetrating the body region located between two neighboring gate trenches. A polysilicon structure with a conductivity type identical to that of the body region is located in a lower portion of the first trench and spaced from the body region with a predetermined distance. A dielectric structure is located on the polysilicon structure and at least extended to the body region. Source regions are located in an upper portion of the body region. A heavily doped region located in the body region is extended to the bottom of the body region. A conductive structure is electrically connected to the heavily doped region and the source region.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 10, 2015
    Assignee: Great Power Semiconductor Corp.
    Inventor: Chun-Ying Yeh
  • Patent number: 8900950
    Abstract: A fabrication method of a high cell density trench power MOSFET structure is provided. Form at least a gate trench in a silicon substrate and a gate dielectric layer on the silicon substrate. Form a gate polysilicon structure in the gate trench and cover by a passivation layer. Form a first-conductive-type body region in the silicon substrate and implant impurities with a second conductive type thereof to form a source doped region. Expose the gate polysilicon structure and the source doped region. Form a dielectric spacer having a predetermined thickness on a sidewall of the gate trench. Deposit metal on the gate polysilicon structure and the source doped region. A first and a second self-aligned silicide layer are respectively formed on the gate polysilicon structure and the source doped region. The dielectric spacer forms an appropriate distance between the first and the second self-aligned silicide layer.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 2, 2014
    Assignee: Great Power Semiconductor Corp.
    Inventor: Hsiu-Wen Hsu
  • Patent number: 8872265
    Abstract: An exemplary embodiment of the present disclosure illustrates a trench power MOSFET which includes a base, a plurality of first trenches, and a plurality of second trenches. The base has an active region and a termination region, wherein the termination region surrounds the active region. The plurality of first trenches is disposed in the active region. The plurality of second trenches is disposed in the termination region, wherein the second trenches extend outward from the active region side. The second trenches have isolation layers and conductive material deposited inside, in which the isolation layers are respectively disposed in the inner surface of the second trenches. The disclosed trench power MOSFET having the second trenches disposed in the termination region can increase the breakdown voltage thereof while minimize the termination region area thereby reduce the associated manufacturing cost.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 28, 2014
    Assignee: Great Power Semiconductor Corp.
    Inventors: Chun-Ying Yeh, Yuan-Ming Lee
  • Patent number: 8846469
    Abstract: A fabrication method of a trenched power semiconductor device with source trench is provided. Firstly, at least two gate trenches are formed in a base. Then, a dielectric layer and a polysilicon structure are sequentially formed in the gate trench. Afterward, at least a source trench is formed between the neighboring gate trenches. Next, the dielectric layer and a second polysilicon structure are sequentially formed in the source trench. The second polysilicon structure is located in a lower portion of the source trench. Then, the exposed portion of the dielectric layer in the source trench is removed to expose a source region and a body region. Finally, a conductive structure is filled into the source trench to electrically connect the second polysilicon structure, the body region, and the source region.
    Type: Grant
    Filed: May 12, 2012
    Date of Patent: September 30, 2014
    Assignee: Great Power Semiconductor Corp.
    Inventors: Chun Ying Yeh, Hsiu Wen Hsu
  • Patent number: 8735249
    Abstract: A trenched power semiconductor device on a lightly doped substrate is provided. Firstly, a plurality of trenches including at least a gate trench and a contact window are formed on the lightly doped substrate. Then, at least two trench-bottom heavily doped regions are formed at the bottoms of the trenches. These trench-bottom heavily doped regions are then expanded to connect with each other by using thermal diffusion process so as to form a conductive path. Afterward, the gate structure and the well are formed above the trench-bottom heavily doped regions, and then a conductive structure is formed in the contact window to electrically connect the trench-bottom heavily doped regions to an electrode.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 27, 2014
    Assignee: Great Power Semiconductor Corp.
    Inventors: Yi-Yun Tsai, Yuan-Shun Chang, Kao-Way Tu
  • Publication number: 20140120670
    Abstract: A trenched power semiconductor device with enhanced breakdown voltage is provided. The trenched power semiconductor device has a first trench penetrating the body region located between two neighboring gate trenches. A polysilicon structure with a conductivity type identical to that of the body region is located in a lower portion of the first trench and spaced from the body region with a predetermined distance. A dielectric structure is located on the polysilicon structure and at least extended to the body region. Source regions are located in an upper portion of the body region. A heavily doped region located in the body region is extended to the bottom of the body region. A conductive structure is electrically connected to the heavily doped region and the source region.
    Type: Application
    Filed: March 7, 2013
    Publication date: May 1, 2014
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: CHUN-YING YEH
  • Publication number: 20140042534
    Abstract: A trenched power semiconductor device with enhanced breakdown voltage is provided. The trenched power semiconductor device has a first trench penetrating the body region located between two neighboring gate trenches. A polysilicon structure with a conductivity type identical to that of the body region is located in a lower portion of the first trench and spaced from the body region with a predetermined distance. A dielectric structure is located on the polysilicon structure and at least extended to the body region. Source regions are located in an upper portion of the body region. A heavily doped region located in the body region is extended to the bottom of the body region. A conductive structure is electrically connected to the heavily doped region and the source region.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 13, 2014
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: Chun-Ying YEH
  • Publication number: 20130292761
    Abstract: An exemplary embodiment of the present disclosure illustrates a trench power MOSFET which includes a base, a plurality of first trenches, and a plurality of second trenches. The base has an active region and a termination region, wherein the termination region surrounds the active region. The plurality of first trenches is disposed in the active region. The plurality of second trenches is disposed in the termination region, wherein the second trenches extend outward from the active region side. The second trenches have isolation layers and conductive material deposited inside, in which the isolation layers are respectively disposed in the inner surface of the second trenches. The disclosed trench power MOSFET having the second trenches disposed in the termination region can increase the breakdown voltage thereof while minimize the termination region area thereby reduce the associated manufacturing cost.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 7, 2013
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventors: CHUN YING YEH, YUAN MING LEE
  • Patent number: 8569134
    Abstract: A closed cell trench MOSFET structure having a drain region of a first conductivity type, a body of a second conductivity type, a trenched gate, and a plurality of source regions of the first conductivity type is provided. The body is located on the drain region. The trenched gate is located in the body and has at least two stripe portions and a cross portion. A bottom of the stripe portions is located in the drain region and a bottom of the cross portion is in the body. The source regions are located in the body and at least adjacent to the stripe region of the trenched gate.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: October 29, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Hsiu Wen Hsu
  • Patent number: 8525256
    Abstract: A power semiconductor structure with schottky diode is provided. In the step of forming the gate structure, a separated first polysilicon structure is also formed on the silicon substrate. Then, the silicon substrate is implanted with dopants by using the first polysilicon structure as a mask to form a body and a source region. Afterward, a dielectric layer is deposited on the silicon substrate and an open penetrating the dielectric layer and the first polysilicon structure is formed so as to expose the source region and the drain region below the body. The depth of the open is smaller than the greatest depth of the body. Then, a metal layer is filled into the open to electrically connect to the source region and the drain region.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: September 3, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventors: Hsiu Wen Hsu, Chun Ying Yeh
  • Patent number: 8445958
    Abstract: A power semiconductor device comprising a base, a trench, a heavily doped polysilicon structure, a polysilicon gate, a gate dielectric layer, and a heavily doped region is provided. The trench is formed in the base. The heavily doped polysilicon structure is formed in the lower portion of the trench. At least a side surface of the heavily doped polysilicon structure touches the naked base. The polysilicon gate is located in the upper portion of the trench. The gate dielectric layer is interposed between the polysilicon gate and the heavily doped polysilicon structure. The dopants in the heavily doped polysilicon structure are diffused outward to form a heavily doped region.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 21, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Kao-Way Tu
  • Patent number: 8421149
    Abstract: A fabrication method of trench power semiconductor structure with high switching speed is provided. An epitaxial layer with a first conductivity type is formed on a substrate. Then, gate structures are formed in the epitaxial layer. A shallow doped region with the first conductivity type is formed in the surface layer of the epitaxial layer. After that, a shielding structure is formed on the shallow doped region. Then, wells with a second conductivity type are formed in the epitaxial layer by using the shielding structure as an implantation mask. Finally, a source doped region with the first conductivity type is formed on the surface of the well. The doping concentration of the shallow doped layer is smaller than that of the source doped region and the well. The doping concentration of the shallow doped layer is larger than that of the epitaxial layer.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 16, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventors: Yuan-Shun Chang, Kao-Way Tu
  • Patent number: 8357952
    Abstract: A power semiconductor structure with a field effect rectifier having a drain region, a body region, a source region, a gate channel, and a current channel is provided. The body region is substantially located above the drain region. The source region is located in the body region. The gate channel is located in the body region and adjacent to a gate structure. The current channel is located in the body region and is extended from the source region downward to the drain region. The current channel is adjacent to a conductive structure coupled to the source region.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 22, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Kao-Way Tu
  • Patent number: 8354315
    Abstract: A power semiconductor structure with schottky diode is provided. In the step of forming the gate structure, a separated first polysilicon structure is also formed on the silicon substrate. Then, the silicon substrate is implanted with dopants by using the first polysilicon structure as a mask to form a body and a source region. Afterward, a dielectric layer is deposited on the silicon substrate and an open penetrating the dielectric layer and the first polysilicon structure is formed so as to expose the source region and the drain region below the body. The depth of the open is smaller than the greatest depth of the body. Then, a metal layer is filled into the open to electrically connect to the source region and the drain region.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 15, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventors: Hsiu Wen Hsu, Chun Ying Yeh
  • Publication number: 20120322217
    Abstract: A fabrication method of a trenched power semiconductor device with source trench is provided. Firstly, at least two gate trenches are formed in a base. Then, a dielectric layer and a polysilicon structure are sequentially formed in the gate trench. Afterward, at least a source trench is formed between the neighboring gate trenches. Next, the dielectric layer and a second polysilicon structure are sequentially formed in the source trench. The second polysilicon structure is located in a lower portion of the source trench. Then, the exposed portion of the dielectric layer in the source trench is removed to expose a source region and a body region. Finally, a conductive structure is filled into the source trench to electrically connect the second polysilicon structure, the body region, and the source region.
    Type: Application
    Filed: May 12, 2012
    Publication date: December 20, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventors: CHUN YING YEH, HSIU WEN HSU
  • Publication number: 20120309177
    Abstract: A trenched power semiconductor structure with reduced gate impedance and a fabrication method thereof is provided. The trenched power semiconductor structure has a silicon base, a gate trench, a gate oxide layer, and a gate polysilicon structure. The gate trench is formed in the silicon base and extended to an upper surface of the silicon base. The gate oxide layer is formed at least on the inner surface of the gate trench. The gate polysilicon structure is formed in the gate trench with a protruding portion extended form the upper surface of the semiconductor substrate upward. A concave is formed on a sidewall of the protruding portion to expose the upper surface of the silicon base adjacent to the gate trench.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 6, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: Hsiu Wen Hsu
  • Publication number: 20120299091
    Abstract: A trenched power semiconductor device on a lightly doped substrate is provided. Firstly, a plurality of trenches including at least a gate trench and a contact window are formed on the lightly doped substrate. Then, at least two trench-bottom heavily doped regions are formed at the bottoms of the trenches. These trench-bottom heavily doped regions are then expanded to connect with each other by using thermal diffusion process so as to form a conductive path. Afterward, the gate structure and the well are formed above the trench-bottom heavily doped regions, and then a conductive structure is formed in the contact window to electrically connect the trench-bottom heavily doped regions to an electrode.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventors: YI-YUN TSAI, YUAN-SHUN CHANG, KAO-WAY TU
  • Publication number: 20120299109
    Abstract: A fabrication method of trench power semiconductor structure with high switching speed is provided. An epitaxial layer with a first conductivity type is formed on a substrate. Then, gate structures are formed in the epitaxial layer. A shallow doped region with the first conductivity type is formed in the surface layer of the epitaxial layer. After that, a shielding structure is formed on the shallow doped region. Then, wells with a second conductivity type are formed in the epitaxial layer by using the shielding structure as an implantation mask. Finally, a source doped region with the first conductivity type is formed on the surface of the well. The doping concentration of the shallow doped layer is smaller than that of the source doped region and the well. The doping concentration of the shallow doped layer is larger than that of the epitaxial layer.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventors: YUAN-SHUN CHANG, KAO-WAY TU
  • Publication number: 20120295411
    Abstract: A closed cell trench MOSFET structure having a drain region of a first conductivity type, a body of a second conductivity type, a trenched gate, and a plurality of source regions of the first conductivity type is provided. The body is located on the drain region. The trenched gate is located in the body and has at least two stripe portions and a cross portion. A bottom of the stripe portions is located in the drain region and a bottom of the cross portion is in the body. The source regions are located in the body and at least adjacent to the stripe region of the trenched gate.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 22, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: HSIU WEN HSU