Patents Assigned to HOYA Corporation USA
  • Patent number: 9178622
    Abstract: A multi-channel or bidirectional optoelectronic device comprises a two or more optoelectronic components, e.g., a photodetector and a light source. A protective encapsulant can be applied to the optoelectronic device that includes hollow dielectric microspheres to reduce electrical cross-talk, and that can further include an optical absorber to reduce optical cross-talk.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: November 3, 2015
    Assignee: HOYA Corporation USA
    Inventors: Araceli Ruiz, Peter C. Sercel, Joel S. Paslaski, Rolf A. Wyss
  • Patent number: 9151890
    Abstract: An optical apparatus comprises: source, primary, and secondary waveguides formed in waveguide layers on a substrate; a light source; and an optical waveguide tap. The light source launches a source optical signal along the source waveguide. The tap divides the source optical signal into a primary optical signal in the primary waveguide and a secondary optical signal in the secondary waveguide. The secondary optical signal emerges from the secondary waveguide to exit the waveguide layers at the substrate edge or to propagate within the waveguide layers as a stray optical signal without confinement by any waveguide. The stray optical signal propagates thusly unconfined into the open mouth of an optical trap that comprises one or more lateral surfaces formed in the waveguide layers and an opaque coating on the lateral surfaces, and comprises a spiral region of the optical waveguide layers with an open mouth and closed end.
    Type: Grant
    Filed: August 31, 2014
    Date of Patent: October 6, 2015
    Assignee: HOYA Corporation USA
    Inventors: Peter C. Sercel, Toshiaki Sonehara, Rolf A. Wyss
  • Patent number: 9151664
    Abstract: An optical submount has a circumscribed 4-faced depression on its bottom surface and a 3-faced depression at an edge of its bottom surface. An optical signal is transmitted through a face of the 3-faced depression and internally reflected from a face of the 4-faced depression. A set of additional depressions and intervening areas on the submount bottom surface act as an alignment mark.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 6, 2015
    Assignee: HOYA Corporation USA
    Inventors: Rolf A. Wyss, Peter C. Sercel
  • Patent number: 8995813
    Abstract: An optical apparatus comprises: a waveguide substrate, optical cladding formed on the substrate; a waveguide core formed within the cladding, an optically absorptive layer formed within the cladding, and a linearly polarized light source. The waveguide core includes an attenuating segment thereof, and the absorptive layer is formed near the attenuating segment of the core. The core and cladding are arranged to form an optical waveguide that supports a propagating optical mode. The absorptive layer is positioned near the attenuating segment of the core so as to spatially overlap a portion of the optical mode. The extent of the overlap results in a designed level of optical loss per unit distance of propagation of a linearly polarized optical signal along the attenuating segment of the optical core in the optical mode without substantial alteration of the polarization state of the optical signal.
    Type: Grant
    Filed: November 17, 2012
    Date of Patent: March 31, 2015
    Assignee: HOYA Corporation USA
    Inventors: Rolf A. Wyss, Toshiaki Sonehara
  • Publication number: 20140328600
    Abstract: A multi-channel or bidirectional optoelectronic device comprises a two or more optoelectronic components, e.g., a photodetector and a light source. A protective encapsulant can be applied to the optoelectronic device that includes hollow dielectric microspheres to reduce electrical cross-talk, and that can further include an optical absorber to reduce optical cross-talk.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 6, 2014
    Applicant: HOYA Corporation USA
    Inventors: Araceli Ruiz, Peter C. Sercel, Joel S. Paslaski, Rolf A. Wyss
  • Publication number: 20140319677
    Abstract: One or more metal contacts are formed in a recessed area on a top surface of a submount; a pickup tool of a die bonder engages protruding peripheral regions of the submount so as not to damage the metal contacts or metal bumps in the recessed region. A semiconductor optical submount includes non-contiguous dielectric layers between metal contacts and the semiconductor material to reduce parasitic capacitance.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 30, 2014
    Applicant: HOYA CORPORATION USA
    Inventors: Rolf A. Wyss, Peter C. Sercel
  • Patent number: 8867872
    Abstract: An optical apparatus comprises: source, primary, and secondary waveguides formed in waveguide layers on a substrate; a light source; and an optical waveguide tap. The light source launches a source optical signal along the source waveguide. The tap divides the source optical signal into a primary optical signal in the primary waveguide and a secondary optical signal in the secondary waveguide. The secondary optical signal emerges from the secondary waveguide to exit the waveguide layers at the substrate edge or to propagate within the waveguide layers as a stray optical signal without confinement by any waveguide. The stray optical signal propagates thusly unconfined into the open mouth of an optical trap that comprises one or more lateral surfaces formed in the waveguide layers and an opaque coating on the lateral surfaces, and comprises a spiral region of the optical waveguide layers with an open mouth and closed end.
    Type: Grant
    Filed: October 27, 2012
    Date of Patent: October 21, 2014
    Assignee: HOYA Corporation USA
    Inventors: Peter C. Sercel, Toshiaki Sonehara, Rolf A. Wyss
  • Patent number: 8861970
    Abstract: A bidirectional optoelectronic device comprises a photodetector, a light source, and a drive circuit for the light source. The light source has first and second electrical leads for receiving an input electrical signal, and the drive circuit can be arranged to apply first and second portions of the input electrical signal to the first and second electrical leads, respectively, wherein the second portion of the input electrical signal is a scaled, inverted substantial replica of the first portion of the input electrical signal. A protective encapsulant can be applied that includes hollow dielectric microspheres to reduce electrical cross-talk, and that can further include an optical absorber to reduce optical cross-talk. A waveguide substrate of the device can include light collector(s) or trap(s) for redirecting and attenuating portions of optical signals propagating in waveguide layers on the substrate but not guided by a waveguide.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: October 14, 2014
    Assignee: HOYA Corporation USA
    Inventors: Joel S. Paslaski, Araceli Ruiz, Peter C. Sercel, Rolf A. Wyss
  • Publication number: 20140239167
    Abstract: An optical submount has a circumscribed 4-faced depression on its bottom surface and a 3-faced depression at an edge of its bottom surface. An optical signal is transmitted through a face of the 3-faced depression and internally reflected from a face of the 4-faced depression. A set of additional depressions and intervening areas on the submount bottom surface act as an alignment mark.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 28, 2014
    Applicant: HOYA CORPORATION USA
    Inventors: Rolf A. Wyss, Peter C. Sercel
  • Patent number: 8750712
    Abstract: A multi-channel or bidirectional optoelectronic device comprises a two or more optoelectronic components, e.g., a photodetector and a light source. A protective encapsulant can be applied to the optoelectronic device that includes hollow dielectric microspheres to reduce electrical cross-talk, and that can further include an optical absorber to reduce optical cross-talk.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 10, 2014
    Assignee: HOYA Corporation USA
    Inventors: Araceli Ruiz, Peter C. Sercel, Joel S. Paslaski, Rolf A. Wyss
  • Publication number: 20130315542
    Abstract: A connector assembly for an optical fiber comprises a unitary connector body and a fiber ferrule. The unitary connector body has an axial ferrule channel and a transverse passage connecting the ferrule channel and the connector body outer surface. The ferrule is positioned at least partly within the ferrule channel, and has an axial fiber channel and a transverse ferrule groove on its outer surface. The ferrule is positioned so that a volume defined by the ferrule groove and the ferrule channel surface communicates with the transverse passage. The connector assembly can further comprise a retaining member positioned at least partly within the ferrule groove and at least partly within the transverse passage. The retaining member comprises hardened material that had flowed, prior to hardening, (i) through the transverse passage into the ferrule groove and (ii) into the transverse passage.
    Type: Application
    Filed: November 18, 2012
    Publication date: November 28, 2013
    Applicant: HOYA Corporation USA
    Inventor: Rolf A. Wyss
  • Publication number: 20130315525
    Abstract: An optical apparatus comprises: a waveguide substrate, optical cladding formed on the substrate; a waveguide core formed within the cladding, an optically absorptive layer formed within the cladding, and a linearly polarized light source. The waveguide core includes an attenuating segment thereof, and the absorptive layer is formed near the attenuating segment of the core. The core and cladding are arranged to form an optical waveguide that supports a propagating optical mode. The absorptive layer is positioned near the attenuating segment of the core so as to spatially overlap a portion of the optical mode. The extent of the overlap results in a designed level of optical loss per unit distance of propagation of a linearly polarized optical signal along the attenuating segment of the optical core in the optical mode without substantial alteration of the polarization state of the optical signal.
    Type: Application
    Filed: November 17, 2012
    Publication date: November 28, 2013
    Applicant: HOYA CORPORATION USA
    Inventors: Rolf A. Wyss, Toshiaki Sonehara
  • Publication number: 20130308897
    Abstract: An optical apparatus comprises: source, primary, and secondary waveguides formed in waveguide layers on a substrate; a light source; and an optical waveguide tap. The light source launches a source optical signal along the source waveguide. The tap divides the source optical signal into a primary optical signal in the primary waveguide and a secondary optical signal in the secondary waveguide. The secondary optical signal emerges from the secondary waveguide to exit the waveguide layers at the substrate edge or to propagate within the waveguide layers as a stray optical signal without confinement by any waveguide. The stray optical signal propagates thusly unconfined into the open mouth of an optical trap that comprises one or more lateral surfaces formed in the waveguide layers and an opaque coating on the lateral surfaces, and comprises a spiral region of the optical waveguide layers with an open mouth and closed end.
    Type: Application
    Filed: October 27, 2012
    Publication date: November 21, 2013
    Applicant: HOYA CORPORATION USA
    Inventor: HOYA CORPORATION USA
  • Patent number: 8346097
    Abstract: A method comprises: receiving an RF signal; providing an RF signal level; setting a DC optical power level at one of at least two levels depending on whether the RF signal level is above or below an RF threshold; and modulating with the RF signal optical output power about the DC optical power level. An apparatus comprises: a light source; an RF detector arranged to receive the RF signal and to provide the RF signal level; an optical power control circuit coupled to the RF detector and to the light source that includes a comparator and is arranged to set the DC optical power level according to the RF signal level; and an optical modulator coupled to the light source and arranged to receive the RF signal and to modulate therewith optical output power about the DC set point.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: January 1, 2013
    Assignee: HOYA Corporation USA
    Inventors: Albert M. Benzoni, Joel S. Paslaski
  • Patent number: 8260104
    Abstract: A multiple-core optical waveguide comprises: a substrate; lower and upper waveguide core layers; a waveguide core between the upper and lower waveguide core layers; upper and lower cladding; and middle cladding between the upper and lower waveguide core layers substantially surrounding the waveguide core. Each of the lower, middle, and upper claddings has a refractive index less than refractive indices of the lower waveguide core layer, the upper waveguide core layer, and the waveguide core. Along at least a given portion of the optical waveguide, the upper and lower waveguide core layers extend bilaterally substantially beyond the lateral extent of a propagating optical mode supported by the optical waveguide, the lateral extent of the supported optical mode being determined at least in part by the width of the waveguide core along the given portion of the optical waveguide.
    Type: Grant
    Filed: December 19, 2009
    Date of Patent: September 4, 2012
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, David W. Vernooy
  • Publication number: 20110235963
    Abstract: An optical apparatus comprises: an optical fiber, an optoelectronic device on a substrate, a circuit board, and an electrical connection therebetween. A substrate groove positions the fiber for optical coupling with the device. The substrate is mounted on the circuit board; a proximal fiber segment is secured in the substrate groove; a distal fiber segment is secured to the circuit board. The circuit board includes vias providing electrical connections between contacts on its top and bottom surfaces. A method comprises: mounting on the circuit board the substrate and optoelectronic device; establishing the electrical connection; securing proximal and distal fiber segments to the substrate groove and circuit board, respectively. Multiple substrates can be secured to a single piece of circuit board material, which can be divided into individual circuit boards after establishing electrical connections and securing optical fibers to the corresponding substrates and circuit board material.
    Type: Application
    Filed: September 23, 2010
    Publication date: September 29, 2011
    Applicant: HOYA CORPORATION USA
    Inventor: Albert M. Benzoni
  • Patent number: 7943894
    Abstract: An optical element comprises a substantially transparent material having opposing first and second transmission surfaces and a substantially flat mounting surface between them, an alignment mark, and an optical coating. The optical element is mounted self-supporting on a substrate with the mounting surface on a mating portion thereof. With the alignment mark aligned to a corresponding mark on the substrate, waveguides on the substrate can be end-coupled by reflection from the first transmission surface. The transmission and mounting surfaces are arranged to position the transmission surfaces at respective orientations relative to the substrate surface so that an optical beam propagating substantially parallel to the substrate surface and entering the optical element through the first transmission surface propagates as an optical beam through the optical element above the mounting surface and exits the optical element through the second transmission surface.
    Type: Grant
    Filed: November 21, 2009
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, Albert M. Benzoni, Rolf A. Wyss
  • Patent number: 7945132
    Abstract: An optical apparatus comprises: a waveguide substrate; three planar optical waveguides formed on the substrate, each comprising a transmission core and cladding; a laser positioned to launch its optical output to propagate along the first waveguide; a photodetector positioned to receive an optical signal propagating along the second waveguide; and a lateral splitter core formed on the substrate for (i) transferring a first fraction of laser optical output propagating along the first waveguide to the second waveguide, and (ii) transferring a second fraction of the laser optical output propagating along the first waveguide to the third waveguide.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventors: David W. Vernooy, Joel S. Paslaski
  • Patent number: 7943229
    Abstract: An optical apparatus comprises: a substrate; an optical device, an optical waveguide, or an optical element on the first substrate surface; a reflection-suppressing layer on a second substrate surface opposite the first substrate surface; and an absorbing layer on the reflection-suppressing layer, so that over at least a portion of the second substrate surface the reflection-suppressing layer is between the second substrate surface and the absorbing layer. The absorbing layer absorbs light over at least a portion of an operative wavelength range of the optical apparatus, while the reflection-suppressing layer suppresses reflection from the second substrate surface of light over at least a portion of the operative wavelength range of the optical apparatus to a reflectivity value below that of the second substrate surface with only the absorbing layer present.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, David W. Vernooy
  • Patent number: 7945166
    Abstract: A network interface apparatus comprises a bidirectional optical signal port, an optical diplexer connected to the bidirectional optical signal port, a first RF signal port (bidirectional), a second RF signal port, a first RF diplexer, and an RF splitter. The RF diplexer transmits a first received RF input signal from the first RF signal port to the optical diplexer to modulate an optical output signal transmitted by the optical diplexer to the optical signal port. The RF splitter receives from the optical diplexer an RF signal derived from an RF-modulated optical input signal received from the bidirectional optical signal port, transmits a first portion of the derived RF signal as a first RF output signal to the first RF signal port through the first RF diplexer, and transmits a second portion of the derived RF signal as a second RF output signal to the second RF signal port.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventor: Henry A. Blauvelt