Patents Assigned to Hughes Danbury Optical Systems, Inc.
  • Patent number: 6191404
    Abstract: A charge-coupled imaging device (FIG. 3) is thinned to allow for backside illumination. The device is further enhanced using ion implantation techniques to establish an electrical field (44) at the back surface, which functions to drive free electrons to potential wells generated beneath a gate structure (40) on the front surface. The device structure allows for both front side and backside illumination and is useful as a imaging device in applications where it is necessary to combine images from two different optical sources. The imaging device is particularly useful in terrestrial guidance systems (FIG. 5) where the imaging device is used to detect guide stars from a large guide star field. In such systems, the imaging device must be translated within an X-Y plane in order to cover the entire guide star field. In order to accurately know the position of the imaging device, optical fiducial marks are imaged onto a side of the imaging device opposite the side receiving the guide star photons.
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: February 20, 2001
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Richard R. Poole, Enrique Garcia
  • Patent number: 5969334
    Abstract: An array of a large number of low quality light collectors measure light generated by arrays of coherent light illuminators and rebounded from a target. The resulting data is utilized to derive the resulting speckle pattern which in turn is Fourier transformed to reconstruct the target image.
    Type: Grant
    Filed: May 6, 1985
    Date of Patent: October 19, 1999
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Richard A. Hutchin
  • Patent number: 5724121
    Abstract: A deformable substrate chuck includes a deformable mounting plate supported by a plurality of individually controllable variable-length actuators. Each actuator is controllable to vary the height of the portion of the deformable mounting plate which it supports. A chamber within the mounting plate accessible through a vacuum port can be evacuated to hold a substrate such as a semiconductor wafer or a flat panel display to a porous top surface of the mounting plate. An optical sensing system senses the shape of the substrate and generates control signals used to control the lengths of the variable-length actuators to control the shape of the substrate.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: March 3, 1998
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: William G. McKinley, Bernhard P. Piwczyk, John R. Burgess
  • Patent number: 5724185
    Abstract: In the method and apparatus of the present invention, a first optical element having a surface stressed by an optical coating is optically contacted with a second optical element. The first optical element is treated with a frequency or polarization selective coating which causes deformation of the treated surface. A pliable intermediate optical element is joined with the coated surface. The intermediate element is sufficiently pliable to substantially conform to the contour of the coated surface, providing optical contact therebetween. An opposite face of the intermediate element is polished and a second optical element is optically contacted to the intermediate element. This provides a precise and economical method for joining two optical elements, one of which is treated with an optical coating.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: March 3, 1998
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Carolyn F. Hickey, Robert O. Woodbury, Dale A. Allen
  • Patent number: 5715345
    Abstract: An optical beam regenerator includes a plurality of optical fibers into which an input beam is directed. The optical fibers are positioned to rearrange portions of the input beam to generate an output beam having a uniform or other prescribed distribution of irradiance. To further smooth the irradiance distribution of the output beam, the beam can be directed through a Kohler illumination system.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: February 3, 1998
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: William G. McKinley
  • Patent number: 5669997
    Abstract: The present invention involves a method for bonding together molecularly homogeneous objects including optical and semiconductor members. In particular, such method involves forming micro-thin grooves using high precision laser ablation in one of two surfaces to be bonded together. An adhesive is then flowed into such a groove to form chemical bonding of the members. Such bonding essentially eliminates the formation of an adhesive layer in the interface between the bonding surfaces allowing optical contacting in addition to the chemical bonding.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: September 23, 1997
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Charles F. Robbert, Steven M. Daigneault
  • Patent number: 5631770
    Abstract: A reflective scanning telescopic system comprises: a primary ellipsoidal mirror for collecting incoming light, a secondary hyperbolic mirror for reflecting the light collected by the primary mirror axially through the primary mirror, a tertiary ellipsoidal mirror, disposed behind the primary mirror for receiving the light from the secondary curved mirror, and a double bounce fold mirror for directing light reflected from the first fold mirror to the tertiary mirror and for reflecting light from the tertiary mirror past the first fold mirror to a light imaging system. Ideally, the telescopic system is mounted on a substantially rigid optical bench on a gimbal for supporting the optical bench and enabling the optical bench to scan in two dimensions by pivoting along roll and pitch axes.
    Type: Grant
    Filed: May 26, 1994
    Date of Patent: May 20, 1997
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Paul J. Jarmuz
  • Patent number: 5594543
    Abstract: An optical radar system includes a laser diode and an external cavity formed by a partial reflector for reflecting a first portion of the laser beam back into the diode. A second portion of the beam is passed out of the external cavity for backscatter thereof from a target back into the diode. The emission thereby has a beat frequency related to the velocity of the target. A frequency chirp is introduced by mechanically oscillating the partial reflector longitudinally resulting in a modulation frequency in the emission corresponding to the range of the target. A photodetector and processor are used to determine the velocity and range.
    Type: Grant
    Filed: January 16, 1990
    Date of Patent: January 14, 1997
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Peter de Groot, Gregg M. Gallatin, Chandra Roychoudhuri
  • Patent number: 5570092
    Abstract: A method and apparatus for reducing electromagnetic scatter is disclosed in which a step discontinuity is formed at the interface between two media having different surface impedances.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: October 29, 1996
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Margaret Kohin-Nitschelm
  • Patent number: 5548444
    Abstract: An optical beam homogenizer includes an entrance pupil through which a non-uniform optical beam propagates. A first optical component having plural flat surfaces receives the input beam. The flat surfaces of the first optical component effectively segment the entrance pupil by dividing the input beam into plural beamlets, one beamlet for each pupil segment and flat surface. The beamlets are received by a second optical component which also has multiple flat surfaces, each flat surface receiving a beamlet. The second optical component directs the beamlets toward each other such that they overlap at an exit pupil of the system. The second optical component also focuses the beamlets such that an image of each entrance pupil segment is formed at the exit pupil. The images of the individual entrance pupil segments are superimposed upon each other at the exit pupil to form a uniform optical output beam.
    Type: Grant
    Filed: July 6, 1994
    Date of Patent: August 20, 1996
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Joseph L. McLaughlin, Mark R. Fernald, Kenneth J. Harte
  • Patent number: 5233174
    Abstract: A wavefront sensor (10) includes a radiation sensor (2) and an array (12) of lenslets (12A) that are optically coupled to the radiation sensor. The array of lenslets has a radiation receiving surface for receiving an incident wavefront and for focussing the wavefront at a plurality of focal positions upon the radiation sensor. Each of the lenslets comprises a diffractive optical element having an optical center that is located at a predetermined point for inducing an equal and opposite tilt to a portion of the wavefront incident on the lenslet. As a result, an aberration within that portion of the wavefront is cancelled. The predetermined point is determined to be equal to and opposite a focal spot shift of the lenslet.
    Type: Grant
    Filed: March 11, 1992
    Date of Patent: August 3, 1993
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: William Zmek
  • Patent number: 5231461
    Abstract: A method and system for calibrating color filters employed in polychromatic imaging of a subject includes a scanning mirror (28), telescope (30), filters (104), and a detector array (60) employed for both imaging and calibration processes. A bundle (44) of optical fibers is employed for producing a slit-shaped beam of solar rays which are collimated and applied to a diffraction grating plate (54) or prism (72) to produce a set of dispersed solar rays. The dispersion is based on color. In one position of the scanning mirror, rays from a subject (12) to provide an image are directed through the telescope and scanned across the filters (104) and detectors (102). In another position of the scanning mirror, the set of dispersed solar rays is scanned past the filters and the detectors. Imaging data outputted by the detectors is collected for producing an image (112) of the subject. Data of the dispersed rays is collected for calibrating the color filters.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: July 27, 1993
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Peter R. Silvergate, Edward F. Zalewski
  • Patent number: 5220406
    Abstract: Optical metrology apparatus includes one or more first sample point interferometers (SPIs) (16) having a wide dynamic range for measuring a rigid body position of a surface of a structure, such as a segmented mirror (11). At least one second SPI (18), having a lower dynamic range, is employed for measuring a figure of the segmented mirror. Either the first or the second SPIs may also be employed to measure a lateral displacement between the mirror segments (11a, 11b). The use of multiple SPIs, having differing dynamic ranges, within a closed-loop mirror control system is also described.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: June 15, 1993
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Stanley J. Kishner
  • Patent number: 5204886
    Abstract: A method is provided for calibrating a beamline (24) used for X-ray lithography. The beamline includes an elongated evacuated tube (28) extending from an X-ray source (22) for containing the X-ray beam to a closure (32) at an opposite end including a beryllium window. A target wafer (34) aligned with, but external of, the tube is positioned in a plane transverse of the X-ray beamline and is coated with a uniform layer of light sensitive material. A carbon filter (31) intermediate the X-ray source and the target wafer is provided within the tube to block electromagnetic radiation having wavelengths generally in the region of ultraviolet, visible, and infrared ranges of the spectrum. The beam from the X-ray source is scanned through the beamline, through the filter, and onto the target wafer. Thereafter, the wafer is subjected to an etch process thereby forming a contoured surface (34A) emulating the non-uniformities caused by the components of which the beamline is comprised.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: April 20, 1993
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: George W. Dugdale
  • Patent number: 5180150
    Abstract: An apparatus (10) for providing a consistent registration of a semiconductor wafer undergoing process work includes a platen (38) upon which a surround (14) is registered. The surround registers to the platen (38) by matching two pins (42), (40) that protrude from the platen (38) to a hole (44) and a notch (46) in the surround (14), respectively. A first registration surface (16) for registering a flat (20) of a semiconductor wafer (12) is permanently mounted to the surround (14). A second registration surface (18) for registering a point (24) on the circumference of the semiconductor wafer (12) is permanently mounted to the surround (14). A third, adjustable registration surface (26) also registers to a point (28) on the circumference of the wafer (12). This third registration surface (26) is springloaded to accommodate for slight diameter variations in successively processed semiconductor wafers, and to provide a force to hold the wafer (12) in place.
    Type: Grant
    Filed: January 24, 1992
    Date of Patent: January 19, 1993
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Joseph P. Prusak, Anthony Bassaro
  • Patent number: 5168924
    Abstract: A monochromator 18 has a thin faceplate which reduces temperature-induced distortion in a strain-free region by placing it close to a two-level heat exchanger 46, 64. The heat exchanger has a first level 46 in juxtaposition with the faceplate 22 for efficient heat extraction, and a second level 64 which establishes a constant temperature plane along a neutral bending axis of the monochromator 18. The first level heat exchanger is operated at a temperature below the zero CTE point of the silicon faceplate so that the integrated CTE of the faceplate is approximately zero. Pumps 30 and 32 are disposed respectively at the coolant inlets 26 and outlets 28 for fine-tuning the coolant pressure so that a minimal pressure across the faceplate 22 may be established to minimize bending moments on the thin faceplate.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: December 8, 1992
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: William D. Taylor
  • Patent number: 5162251
    Abstract: A standard thick silicon charge-coupled device (FIG. 1A) has its pixel face mounted to a transparent, optically flat glass substrate using a thin layer of thermoset epoxy. The backside silicon of the charge-coupled device is thinned to 10 .+-.0.5 um using a two-step chemi-mechanical process. The bulk silicon is thinned to 75 um with a 700 micro-grit aluminium oxide abrasive and is then thinned and polished to 10 um using 80 nm grit colloidal silica. Access from the backside to the aluminum bonding pads (36 of FIG. 5) of the device is achieved by photolithographic patterning and reactive ion etching of the silicon above the bonding pads. The charge-coupled device is then packaged and wire-bonded in a structure which offers support for the silicon membrane and allows for unobstructed backside illumination.
    Type: Grant
    Filed: March 18, 1991
    Date of Patent: November 10, 1992
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: Richard R. Poole, Enrique Garcia
  • Patent number: 5159408
    Abstract: Optical metrology method and apparatus wherein three optical wavelengths of a fixed polarization are generated and separated into a reference beam (RB) and a measurement or object beam (OB) having, ideally, equal optical path lengths. After reflecting from surfaces being measured OB is combined with RB and provided to sensors which measure the intensity associated with each of the wavelengths. Any difference between the intensities is indicative of a difference in the optical path lengths of OB and RB and is a function of the polarization state of each of the three returned wavelengths. Differences in optical path length may be indicative of a difference between a reference surface and a test surface, or a difference in thickness or index of refraction across an object. Two multi-mode laser diodes (12, 14) are provided for generating the three optical wavelengths.
    Type: Grant
    Filed: March 27, 1991
    Date of Patent: October 27, 1992
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventors: H. E. Waldenmaier, P. J. DeGroot, G. H. Hayes
  • Patent number: 5153669
    Abstract: Optical metrology method and apparatus wherein three optical wavelengths are generated and separated into a reference beam (RB) and an object beam (OB) having substantially equal optical path lengths. After reflecting from a surface being measured OB is combined with RB and provided to sensors which measure the intensity associated with each of the wavelengths. Any difference between the intensities is indicative of a difference in the optical path lengths of OB and RB and is a function of the polarization state of each of the three returned wavelengths. Differences in optical path length are shown to be indicative of a displacement of the object being measured. Preferably, two multimode laser diodes (12,14) are provided for generating the three optical wavelengths. Two synthetic wavelengths are derived from the three optical wavelengths and are employed to improve the precision of measurement while retaining a large dynamic range made possible by the use of a large synthetic wavelength.
    Type: Grant
    Filed: March 27, 1991
    Date of Patent: October 6, 1992
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: P. J. DeGroot
  • Patent number: 5151585
    Abstract: A CW and/or pulse coherent radiation detection system (10) includes at least one radiation detector (14) having a plurality of discrete radiation detector elements (A-D) disposed upon a surface thereof. A coherence length discriminator (CLD), for example an etalon (12), is constructed so as to vary an optical path length therethrough at a plurality of locations. The CLD is disposed relative to the radiation detector such that radiation passing through the CLD is received by the discrete radiation detector elements. The apparatus further includes a drive (16) for translating the CLD relative to the radiation detector so as to modulate only coherent radiation passing through the CLD. The drive is preferably a reactionless drive having an energy consumption made small by the use of small CLD motions that correspond to the dimensions of individual detector elements. The coherent radiation detector is also shown to be usable for detecting an angle of arrival of coherent radiation.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: September 29, 1992
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Edward T. Siebert