Abstract: This invention discloses a semiconductor power device formed on an upper epitaxial layer of a first conductivity type supported on a semiconductor substrate comprises an active cell area and a termination area disposed near edges of the semiconductor substrate. The semiconductor power device having a super junction structure with the epitaxial layer formed with a plurality of doped columns of a second conductivity type. The termination area further comprises a plurality of surface guard ring regions of the second conductivity type dispose near a top surface of the epitaxial layer close to the doped columns of the second conductivity type. In one of the embodiments, one of the surface guard ring regions extending laterally over several of the doped columns in the termination area.
Abstract: A semiconductor power device includes a plurality of power transistor cells each having a trenched gate disposed in a gate trench opened in a semiconductor substrate wherein a plurality of the trenched gates further include a shielded bottom electrode disposed in a bottom portion of the gate trench electrically insulated from a top gate electrode disposed at a top portion of the gate trench by an inter-electrode insulation layer. At least one of the shielded bottom electrode is connected a source metal and at least one of the top electrodes in the gate trench is connected to a source metal of the power device.
Abstract: This invention discloses a semiconductor power device formed on an upper epitaxial layer of a first conductivity type supported on a semiconductor substrate. The semiconductor power device having a super junction structure with the epitaxial layer formed with a plurality of vertically extended doped columns of a second conductivity type. The semiconductor power device further comprises a plurality of transistor cells each of the transistor cells comprises a planar gate extending over a top surface and each of the planar gates further includes a middle trench gate extending vertically into the epitaxial layer from a middle portion of the planar gates. Each of the middle trench gates is surrounded by a source region of the first conductivity type encompassed in a body region of the second conductivity type extending substantially between two adjacent doped columns of the second conductivity type.
Abstract: This invention discloses a metal oxide semiconductor field effect transistor (MOSFET) device. The MOSFET device has a semiconductor substrate that supports an epitaxial layer thereon. The epitaxial layer comprises at least three layers of different dopant concentrations and wherein a middle epitaxial layer having a varying dopant concentration profile along an upward vertical direction.
Abstract: A semiconductor power device includes a plurality of power transistor cells each having a trenched gate disposed in a gate trench opened in a semiconductor substrate wherein a plurality of the trenched gates further include a shielded bottom electrode disposed in a bottom portion of the gate trench electrically insulated from a top gate electrode disposed at a top portion of the gate trench by an inter-electrode insulation layer. At least one of the shielded bottom electrode is connected a source metal and at least one of the top electrodes in the gate trench is connected to a source metal of the power device.