Abstract: A microprocessor packaging architecture using a modular circuit board assembly that provides power to a microprocessor while also providing for integrated thermal and electromagnetic interference (EMI) is disclosed. The modular circuit board assembly comprises a substrate, having a component mounted thereon, a circuit board, including a circuit for supplying power to the component, and at least one conductive interconnect device disposed between the substrate and the circuit board, the conductive interconnect device configured to electrically couple the circuit to the component.
Type:
Grant
Filed:
February 16, 2001
Date of Patent:
September 17, 2002
Assignee:
INCEP Technologies, Inc.
Inventors:
Joseph Ted Dibene, II, David H. Hartke, James Hjerpe Kaskade, Carl E. Hoge
Abstract: A stack up assembly for supplying power and removing heat from a microprocessor while controlling electromagnetic emissions is disclosed. The stack up assembly comprises a VRM circuit board or power regulation module, having a first side and a second side; a thermally conductive plate such as a vapor plate having a first side and a second side, wherein the thermally conductive plate first side is thermally coupled to the second side of the VRM circuit board; and a microprocessor having a first side and a second side, the microprocessor first side thermally coupled to the vapor plate second side.
Abstract: An encapsulated circuit assembly and a method for making an encapsulated circuit assembly are disclosed. The assembly comprises a first printed circuit board, a second printed circuit board, and a heat transfer device. The second printed circuit board comprises a heatsink, and the heat transfer device couples between a device mounted on the first printed circuit board and the second printed circuit board for transferring heat from the device to the heatsink of the second printed circuit board.
Abstract: An encapsulated circuit assembly and a method for making an encapsulated circuit assembly are disclosed. The assembly comprises a first printed circuit board, a second printed circuit board, and a heat transfer device. The second printed circuit board comprises a heatsink, and the heat transfer device couples between a device mounted on the first printed circuit board and the second printed circuit board for transferring heat from the device to the heatsink of the second printed circuit board.