Patents Assigned to Institute for Research in Biomedicine
  • Publication number: 20240101609
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Application
    Filed: December 12, 2023
    Publication date: March 28, 2024
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servi, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, Tongqing Zhou, John Mascola, Kai Xu, Yongping Yang, Paul Thomas, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Publication number: 20240024458
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Application
    Filed: September 6, 2023
    Publication date: January 25, 2024
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servic, Institute For Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Patent number: 11845778
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: December 19, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, John Mascola, Kai Xu, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Patent number: 11786591
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 17, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Patent number: 11778995
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: October 10, 2023
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Patent number: 11766032
    Abstract: Genetically modified non-human animals expressing human EPO from the animal genome are provided. Also provided are methods for making non-human animals expressing human EPO from the non-human animal genome, and methods for using non-human animals expressing human EPO from the non-human animal genome. These animals and methods find many uses in the art, including, for example, in modeling human erythropoiesis and erythrocyte function; in modeling human pathogen infection of erythrocytes; in in vivo screens for agents that modulate erythropoiesis and/or erythrocyte function, e.g. in a healthy or a diseased state; in in vivo screens for agents that are toxic to erythrocytes or erythrocyte progenitors; in in vivo screens for agents that prevent against, mitigate, or reverse the toxic effects of toxic agents on erythrocytes or erythrocyte progenitors; in in vivo screens of erythrocytes or erythrocyte progenitors from an individual to predict the responsiveness of an individual to a disease therapy.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: September 26, 2023
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Andrew J. Murphy, Sean Stevens, Richard Flavell, Markus Gabriel Manz, Liang Shan
  • Patent number: 11732011
    Abstract: Disclosed herein are nanostructures and their use, where the nanostructures include (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first polypeptides; (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptide differs from the first polypeptide; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form a nanostructures; and wherein the nanostructure displays multiple copies of one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragments thereof, on an exterior of the nanostructure.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: August 22, 2023
    Assignees: University of Washington, Institute for Research in Biomedicine
    Inventors: Neil P. King, David Baker, Brooke Fiala, Lance Joseph Stewart, Laurent Perez, Antonio Lanzavecchia, Jessica Marcandalli
  • Patent number: 11576356
    Abstract: Genetically modified non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome are provided. Also provided are methods for making non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome, and methods for using non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome. These animals and methods find many uses in the art, including, for example, in modeling human T cell and/or natural killer (NK) cell development and function, in modeling human pathogen infection of human T cells and/or NK cells, and in various in vivo screens.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: February 14, 2023
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Dietmar Herndler-Brandstetter, Richard A. Flavell, Davor Frleta, Cagan Gurer, Markus Gabriel Manz, Andrew J. Murphy, Noah W. Palm, Liang Shan, Sean Stevens, Till Strowig, George D. Yancopoulos, Marcel de Zoete
  • Patent number: 11261245
    Abstract: The present invention provides multispecific antibodies, and antigen binding fragments thereof, that potently neutralize a cytokine and that may thus be useful in the prevention and/or treatment of inflammatory and/or autoimmune diseases. In particular, the present invention provides a multispecific antibody, or an antigen binding fragment thereof, comprising at least two different domains specifically binding to at least two different, non-overlapping sites in a cytokine and an Fc moiety. The invention also relates to nucleic acids that encode such antibodies and antibody fragments and immortalized B cells and cultured plasma cells that produce such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies and antibody fragments of the invention in screening methods as well as in the diagnosis, prophylaxis and treatment of inflammatory and/or autoimmune diseases.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 1, 2022
    Assignee: INSTITUTE FOR RESEARCH IN BIOMEDICINE
    Inventors: Davide Corti, Antonio Lanzavecchia, Luca Piccoli
  • Publication number: 20220024987
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 27, 2022
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, John Mascola, Kai Xu, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Patent number: 11192926
    Abstract: Disclosed herein are nanostructures and their use, where the nanostructures include (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first polypeptides; (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptide differs from the first polypeptide; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form a nanostructures; and wherein the nanostructure displays multiple copies of one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragments thereof, on an exterior of the nanostructure.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: December 7, 2021
    Assignees: University of Washington, Institute for Research in Biomedicine
    Inventors: Neil P. King, David Baker, Brooke Nickerson, Lance Joseph Stewart, Laurent Perez, Antonio Lanzavecchia, Jessica Marcandalli
  • Patent number: 11167015
    Abstract: The present invention provides novel uses and methods for T cell based immunotherapies. Specifically, the invention relates to novel ligands, targets and nucleic acids and vectors encoding said targets that are useful for modulating T cell responses.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: November 9, 2021
    Assignee: INSTITUTE FOR RESEARCH IN BIOMEDICINE
    Inventors: Roger Geiger, Antonio Lanzavecchia, Federica Sallusto
  • Publication number: 20210283240
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servic, Institute for Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Patent number: 11078239
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 3, 2021
    Assignees: The United States of America, as represented by the Secretary, Dept. of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, Tongqing Zhou, John Mascola, Kai Xu, Yongping Yang, Paul Thomas, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Patent number: 11051499
    Abstract: A mouse with a humanization of the mIL-3 gene and the mGM-CSF gene, a knockout of a mRAG gene, and a knockout of a mII2rg subunit gene; and optionally a humanization of the TPO gene is described. A RAG/II2rg KO/hTPO knock-in mouse is described. A mouse engrafted with human hematopoietic stem cells (HSCs) that maintains a human immune cell (HIC) population derived from the HSCs and that is infectable by a human pathogen, e.g., S. typhi or M. tuberculosis is described. A mouse that models a human pathogen infection that is poorly modeled in mice is described, e.g., a mouse that models a human mycobacterial infection, wherein the mouse develops one or more granulomas comprising human immune cells. A mouse that comprises a human hematopoietic malignancy that originates from an early human hematopoietic cells is described, e.g., a myeloid leukemia or a myeloproliferative neoplasia.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 6, 2021
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Sean Stevens, Andrew J. Murphy, Richard Flavell, Elizabeth Eynon, Jorge Galan, Tim Willinger, Markus Manz, Anthony Rongvaux, George D. Yancopoulos
  • Patent number: 11026408
    Abstract: The invention relates generally to genetically modified non-human animals expressing human polypeptides and their methods of use.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 8, 2021
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Markus Manz, Anthony Rongvaux, Till Strowig, Tim Willinger, Andrew J. Murphy, Sean Stevens, George Yancopoulos
  • Patent number: 11027007
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: June 8, 2021
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Publication number: 20210009661
    Abstract: This disclosure relates to binding agents with specificity for HIV and to methods for using the same to treat, pre-vent and/or ameliorate HIV infection and/or AIDS.
    Type: Application
    Filed: June 26, 2020
    Publication date: January 14, 2021
    Applicants: Centre Hospitalier Universitaire Vaudois, Institute for Research in Biomedicine
    Inventors: Giuseppe Pantaleo, Antonio Lanzavecchia
  • Patent number: 10889632
    Abstract: The invention relates to neutralizing antibodies, and antibody fragments thereof, having high potency in neutralizing hCMV, wherein said antibodies and antibody fragments are specific for one, or a combination of two or more, hCMV gene UL products. The invention also relates to immortalized B cells that produce, and to epitopes that bind to, such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, prevention, and therapy of disease.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 12, 2021
    Assignee: Institute for Research in Biomedicine
    Inventors: Antonio Lanzavecchia, Annalisa Macagno
  • Patent number: 10815294
    Abstract: The invention relates to antibodies, and antigen binding fragments thereof, that specifically bind to an epitope in the stem region of an influenza A hemagglutinin trimer and neutralize a group 1 subtype and a group 2 subtype of influenza A virus. The invention also relates to nucleic acids that encode, immortalized B cells and cultured single plasma cells that produce, and to epitopes that bind to such antibodies and antibody fragments. In addition, the invention relates to the use of the antibodies, antibody fragments, and epitopes in screening methods as well as in the diagnosis, treatment and prevention of influenza A virus infection.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 27, 2020
    Assignee: INSTITUTE FOR RESEARCH IN BIOMEDICINE
    Inventor: Antonio Lanzavecchia