Patents Assigned to Institute of Metal Research, Chinese Academy of Sciences
  • Patent number: 11655512
    Abstract: Provided in the present application are a rare-earth microalloyed steel and a control process. The steel has a special microstructure, and the microstructure comprises a rare earth-rich nanocluster having a diameter of 1-50 nm. The nanocluster has the same crystal structure type as a matrix. The rare earth-rich nanocluster inhibits the segregation of the elements S, P and As on a grain boundary, and obviously improves the fatigue life of the steel. In addition, a rare-earth solid solution also directly affects a phase change dynamics process so that the diffusion-type phase change starting temperature in the steel changes at least to 2° C., and even changes to 40-60° C. in some kinds of steel, thereby greatly improving the mechanical properties thereof, and providing a foundation for the development of more kinds of high-performance steel.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: May 23, 2023
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Dianzhong Li, Yikun Luan, Pei Wang, Xiaoqiang Hu, Paixian Fu, Hongwei Liu, Lijun Xia, Chaoyun Yang, Hanghang Liu, Hang Liu, Yiyi Li
  • Patent number: 11149095
    Abstract: Cellulose II nanocrystal particles have a crystallinity ?80%, a number-average molecular weight ranging from 1200 to 2500, and a molecular weight distribution coefficient Mw/Mn?1.30. The cellulose II nanocrystal particles can be prepared by: subjecting a cellulose raw material to an amorphization reconstitution and then to a crystallization acidolysis. The crystallization acidolysis may be carried out under a low concentration acidic condition. The method enables high efficient and clean production and quality control of cellulose nanocrystal materials.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: October 19, 2021
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Jinsong Zhang, Yukun Yan, Yangtao Zhou, Zhiyu Liu
  • Patent number: 10413964
    Abstract: A constructing-and-forging method for preparing homogenized forged pieces comprises: preparing preformed billets: cutting off a plurality of continuous casting billets, milling and smoothing surfaces of the billets to be welded, performing vacuum plasma cleaning operation to the surfaces to be welded, stacking the plurality of billets and sealing around the surfaces in a vacuum chamber by electron beam welding; forge-welding and homogenizing the preformed billets: heating the preformed billets to a certain temperature in a heating furnace and taking the heated preformed billets out of the heating furnace, forging the preformed billets by a hydraulic press, then using three-dimensional forging to disperse the welded surfaces such that composition, structure and inclusion of the interface areas are at the same level as those of the bodies of the billets. Cheap continuous casting billets are stacked and forge welded.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: September 17, 2019
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Mingyue Sun, Bin Xu, Dianzhong Li, Yiyi Li
  • Patent number: 10344391
    Abstract: An Fe—Ni—P-RE multicomponent alloy plating layer, electrodeposition preparation method, and plating application. The alloy plating layer obtained via electrodeposition contains elements Fe, Ni, P and RE, with the following mass percentages Fe— 16%-65%, Ni— 25%-70%, combined Fe and Ni— 63%-91%, RE 1.6%-25%, and the balance being P. The plating solution mainly contains the following components: ferrous salt, nickel salt, NaH2PO2, RECl3, H3BO3 and Na3C6H5O7. A multicomponent alloy plating layer of different components can be obtained by adjusting the main salt and complexing agent in the plating solution and by adjusting the process Enabled is controllable adjustment to the components of the obtained plating layer while saving costs, improved characteristics such as the thermal expansion coefficient, electrical property, magnetic property, etc., and products and methods very suitable for applications in the field of micro-electronics.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 9, 2019
    Assignee: INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhiquan Liu, Di Wu, Liyin Gao, Jingdong Guo
  • Patent number: 9945399
    Abstract: The present invention discloses a liquid-driven nano-porous actuator and the application thereof, and belongs to the field of nano material actuators. According to the present invention, by changing the content of the liquid in the nano-porous material, the interface between the surface liquid of the nano-porous material and air is exchanged between flat and curved states, so as to change the compressive stress acting on the nano-porous material from the surface tension of the liquid and change the elastic deformation of the nano-porous material, thus driving the nano-porous material to contract and expand in a reversible manner and further realizing driving performance.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 17, 2018
    Assignee: INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinglong Ye, Lingzhi Liu, Haijun Jin
  • Patent number: 9896753
    Abstract: A bulk amorphous alloy, including, based on atomic percentage amounts, between 41 and 63% of Zr, between 18 and 46% of Cu, between 1.5 and 12.5% of Ni, between 4 and 15% of Al, between 0.01 and 5% of Ag, and between 0.01 and 5% of Y.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 20, 2018
    Assignees: INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES, DONGGUAN EONTEC CO., LTD.
    Inventors: Huameng Fu, Haifeng Zhang, Zhengkun Li, Aimin Wang, Zhengwang Zhu, Hongwei Zhang, Hong Li, Yangde Li, Weirong Li, Tiezhuang Tang
  • Publication number: 20160263655
    Abstract: Hot isostatic press (HIP) process for superalloy powder, to form a superalloy member. A first step HIP temperature is higher than an initial melting temperature of low-melting-point alloy powder and more than 15° C. lower than a solidus of completely homogenized alloy. Pressure is ?90 MPa, and time is 20 minutes?t?1 hour. Heating is stopped after the first step to cool material until temperature is below initial melting temperature of low-melting-point phase. There is temperature keeping for ?2 hours, to ensure low-melting-point phase, formed during cooling after first step, is completely dissolved. Alloy is cooled after second step to room temperature as furnace pressure keeping continues. Formation of an original particle boundary is prevented or there is significantly reduced the number of precipitated phases on the original particle boundary in HIP procedure, to obtain compact alloy with microscopic structures as equiaxed crystals.
    Type: Application
    Filed: June 13, 2014
    Publication date: September 15, 2016
    Applicant: INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES
    Inventors: Litao CHANG, Yuyou CUI, Wenru SUN, Rui YANG
  • Publication number: 20160053396
    Abstract: Disclosed are a Fe—Ni—P-RE multicomponent alloy plating layer, and electrodeposition preparation method and application thereof. An alloy plating layer obtained via electrodeposition contains elements of Fe, Ni, P and RE, the mass percentage of Fe being 20%-65%, the mass percentage of Ni being 25%-70%, the combined mass percentage of Fe and Ni being 65%-90%, the mass percentage of RE being 2%-25%, and the balance being P. The plating solution mainly contains the following components: ferrous salt, nickel salt, NaH2PO2, RECl3, H3BO3 and Na3C6H5O7. A multicomponent alloy plating layer of different components can be obtained by adjusting the main salt and complexing agent in the plating solution and by adjusting the process. The present invention realizes controllable adjustment to the components of the obtained plating layer while saving costs, and further improves indexes such as the thermal expansion coefficient, electrical property, magnetic property, etc.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 25, 2016
    Applicant: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Zhiquan LIU, Di WU, Liyin GAO, Jingdong GUO
  • Patent number: 9234252
    Abstract: A method for controlling A-shaped segregation of steel ingot. The method includes: 1) controlling a content of phosphorus in liquid steel at less than or equal to 0.005 wt. % upon tapping from an electric furnace, preventing steel slag from entering a ladle, controlling content of harmful elements at less than or equal to 100 ppm; and adding between 3 and 15 kg of calcium oxide and less than or equal to 0.5 kg of aluminum to each ton of the liquid steel; 2) pre-deoxidizing the liquid metal using vacuum carbon deoxidation; 3) de-sulfurizing, controlling content of oxygen, and controlling the content of sulfur in the liquid steel at less than or equal to 0.005 wt. %; and 4) performing vacuum degasification, controlling the total oxygen content at less than or equal to 15 ppm; and casting the steel in the presence of inert gas or in vacuum.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: January 12, 2016
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Dianzhong Li, Paixian Fu, Hongwei Liu, Lijun Xia, Yiyi Li
  • Patent number: 9216559
    Abstract: A method for transferring graphene nondestructively and at a low cost. In the method, a graphene is used whose surface is coated with transferring media and whose original substrate is an electrode, the electrode is placed into an electrolyte, and the graphene is separated from the original substrate by means of the driving force of bubbles and the gas intercalation produced on the graphene electrode surface during electrolysis. Then, the graphene coated with transferring media is nondestructively combined with a target substrate. The transferring media is removed so as to transfer the graphene to the target substrate nondestructively. The transferring method results in no damage or loss with respect to the graphene and the original substrate, and the original substrate can be re-used. Furthermore, the method is easy to perform, works quickly, is easy to control, and is pollution-free.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: December 22, 2015
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Wencai Ren, Libo Gao, Laipeng Ma, Huiming Cheng
  • Publication number: 20150361997
    Abstract: The present invention discloses a liquid-driven nano-porous actuator and the application thereof, and belongs to the field of nano material actuators. According to the present invention, by changing the content of the liquid in the nano-porous material, the interface between the surface liquid of the nano-porous material and air is exchanged between flat and curved states, so as to change the compressive stress acting on the nano-porous material from the surface tension of the liquid and change the elastic deformation of the nano-porous material, thus driving the nano-porous material to contract and expand in a reversible manner and further realizing driving performance.
    Type: Application
    Filed: September 26, 2014
    Publication date: December 17, 2015
    Applicant: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Xinglong YE, Lingzhi LIU, Haijun JIN
  • Publication number: 20140373982
    Abstract: The present invention discloses a magnesium alloy sheet with low Gd content and high ductility and its hot rolling technology, which belongs to the field of metal material technology. The chemical components of the magnesium alloy sheet, based on the mass percent, take up respectively: 0.9˜2.1% as Zn, 0.2˜0.8% as rare earth element, namely Gd, 0˜0.9% as Mn, and the rest as Mg. The magnesium alloy sheet of the present invention is added with relatively lower rare earth element, Gd, which reduces the alloy costs; in addition, magnesium alloy has good rolling performance, which can realize continuous, multi-pass and large-deformation rolling, and also ensure the sheets rolled have non-basal texture and high room-temperature elongation which reaches 35˜50%, wherein the elongation, ?, in the rolling direction is no less than 35% and that in the horizontal direction no less than 45%.
    Type: Application
    Filed: August 2, 2013
    Publication date: December 25, 2014
    Applicant: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Rongshi Chen, Hong Yan, Enhou Han, Wei Ke
  • Publication number: 20140130972
    Abstract: A method for transferring graphene nondestructively and at a low cost. In the method, a graphene is used whose surface is coated with transferring media and whose original substrate is an electrode, the electrode is placed into an electrolyte, and the graphene is separated from the original substrate by means of the driving force of bubbles and the gas intercalation produced on the graphene electrode surface during electrolysis. Then, the graphene coated with transferring media is nondestructively combined with a target substrate. The transferring media is removed so as to transfer the graphene to the target substrate nondestructively. The transferring method results in no damage or loss with respect to the graphene and the original substrate, and the original substrate can be re-used. Furthermore, the method is easy to perform, works quickly, is easy to control, and is pollution-free.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 15, 2014
    Applicant: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Wencai Ren, Libo Gao, Laipeng Ma, Huiming Cheng
  • Patent number: 8696831
    Abstract: Disclosed herein is a chromate-free conversion film solution and a method of applying the solution to magnesium and magnesium alloys. The solution contains zirconium ions, manganese ions, barium ions and phosphate corrosion inhibitor; and the pH of the said solution is in the range of 1-5; and may further comprise molybdate as accelerant. The method comprises degreasing, acid etching, surface activation, surface adjusting, and film forming steps. The conversion film obtained in accordance with the disclosed method is uniform, smooth, and compact and has high corrosion resistance and good adhesion with paint film. Moreover, the chromate-free conversion film solution is environmentally friendly and possesses fast film growth rates.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 15, 2014
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Dayong Shan, Yingwei Song, Enhou Han, Rongshi Chen, Wei Ke
  • Publication number: 20140096648
    Abstract: A method for controlling A-shaped segregation of steel ingot. The method includes: 1) controlling a content of phosphorus in liquid steel at less than or equal to 0.005 wt. % upon tapping from an electric furnace, preventing steel slag from entering a ladle, controlling content of harmful elements at less than or equal to 100 ppm; and adding between 3 and 15 kg of calcium oxide and less than or equal to 0.5 kg of aluminum to each ton of the liquid steel; 2) pre-deoxidizing the liquid metal using vacuum carbon deoxidation; 3) de-sulfurizing, controlling content of oxygen, and controlling the content of sulfur in the liquid steel at less than or equal to 0.005 wt. %; and 4) performing vacuum degasification, controlling the total oxygen content at less than or equal to 15 ppm; and casting the steel in the presence of inert gas or in vacuum.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Dianzhong LI, Paixian FU, Hongwei LIU, Lijun XIA, Yiyi LI
  • Publication number: 20130248056
    Abstract: The present invention relates to the field of casting blank manufacturing, in particular to a method for enhancing the self-feeding ability of a heavy section casting blank, which can solve the problems of poor centre quality, surface crack and high rejection rate of the heavy section casting blanks in the prior art.
    Type: Application
    Filed: June 30, 2011
    Publication date: September 26, 2013
    Applicant: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Dianzhong Li, Yikun Luan, Paixian Fu, Lijun Xia, Yiyi Li
  • Publication number: 20120288398
    Abstract: The present invention relates to a cold-rolling method for cold-rolling a wrought Mg alloy with a weak or non-basal texture as well as a cold-rolled sheet, the method comprising the steps of: pre-treating a billet of the wrought Mg alloy with a weak or non-basal texture, and then cold rolling it; wherein the weak or non-basal texture plane of said billet is selected as a rolling plane, and the rolling direction is parallel to the rolling plane; and said billet is cold rolled at room temperature to a sheet or foil with a thickness of 0.1 to 100 mm, wherein single-pass or multi-pass rolling is used, and the cold rolling is followed by an annealing at 200 to 400° C. for 10 min to 48 h.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 15, 2012
    Applicant: Institute of Metal Research, Chinese Academy of Sciences
    Inventors: Rongshi Chen, Di Wu, Enhou Han, Wei Ke
  • Patent number: 7845203
    Abstract: The invention relates to a new preparation technique of composites, in details, i.e. a method of producing laminated composite materials of different alloys. In the preparation method, the bi-layer or multi-layer composites are prepared by means of the equal channel angular extrusion/pressure (ECAE/ECAP). Firstly, the appropriate alloys pairs or groups are selected, and the rational arrangements are carried out after pre-treating surfaces; then, the clad process is performed by extrusion and shear deformation in ECAE die; finally, the composite material is produced after one single pass or multiple passes clad extrusion. The annealing treatment can be performed subsequently to enhance the interfacial bonding strength by diffusion after the clad extrusion, and the heat treatment parameters consist of annealing temperature and holding time, which are chosen carefully to meet the demands of the refining microstructures and good properties for both the interfaces and individual component metals.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: December 7, 2010
    Assignee: Institute of Metal Research Chineses Academy of Sciences
    Inventors: Enhou Han, Xibo Liu, Rongshi Chen
  • Patent number: 7736448
    Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 15, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
  • Patent number: 7722805
    Abstract: The patent provides the titanium alloy with extra-low modulus and superelasticity containing 20˜35 wt. % niobium, 2˜15 wt. % zirconium, balanced titanium and other unavoidable impurity elements. The advantages of the invention alloy are shown as follows: The invention titanium alloy has superior cold processing capacity and low work hardening rate; It can be severely deformed by cold rolling and cold drawing; It has superelasticity, shape memory effect, damping capacity, low modulus, high strength, good corrosion resistance and high biocompatibility; The invention titanium alloy can be made into nano-size materials by cold deformation and extra high strength can be achieved by heat treatment.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: May 25, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Yulin Hao, Shujun Li, Rui Yang