Patents Assigned to JX Nippon Mining & Metals Corporation
  • Patent number: 10050160
    Abstract: A Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the sintered-compact sputtering target is characterized in that the relative density is 80% or higher, and the compositional deviation of the Ga concentration is within ±0.5 at % of the intended composition. A method of producing a Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the method thereof is characterized in that Cu and Ga raw materials are melted and cooled/pulverized to produce a Cu—Ga alloy raw material powder, and the obtained material powder is further hot-pressed with a retention temperature being between the melting point of the mixed raw material powder and a temperature 15° C. lower than the melting point and with a pressure of 400 kgf/cm2 or more applied to the sintered mixed raw material powder.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 14, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomoya Tamura, Hiroyoshi Yamamoto, Masaru Sakamoto
  • Patent number: 10047012
    Abstract: An IGZO sintered compact composed of indium (In), gallium (Ga), zinc (Zn), oxygen (O) and unavoidable impurities, wherein an average length of cracks existing in the IGZO sintered compact is 3 ?m or more and 15 ?m or less. Provided is a sputtering target capable of suppressing the target cracks and reducing the generation of particles during deposition via DC sputtering, and forming favorable thin films.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 14, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yohei Yamaguchi, Koji Kakuta
  • Patent number: 10041155
    Abstract: Provided are high-purity yttrium and a high-purity yttrium sputtering target each having a purity, excluding rare earth elements and gas components, of 5 N or more and containing 1 wt ppm or less of each of Al, Fe, and Cu; a method of producing high-purity yttrium by molten salt electrolysis of a raw material being a crude yttrium oxide having a purity, excluding gas components, of 4N or less at a bath temperature of 500° C. to 800° C. to obtain yttrium crystals, desalting treatment, water washing, and drying of the yttrium crystals, and then electron beam melting for removing volatile materials to achieve a purity, excluding rare earth elements and gas components, of 5N or more; and a technology capable of efficiently and stably providing high-purity yttrium, a sputtering target composed of the high-purity yttrium, and a metal-gate thin film mainly composed of the high-purity yttrium.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 7, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Masahiro Takahata
  • Patent number: 10037830
    Abstract: An indium oxide sintered compact containing zirconium as an additive, wherein the ratio of atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, the relative density is 99.3% or higher, and the bulk resistance is 0.5 m?·cm or less. An indium oxide transparent conductive film of high transmittance in the visible light region and the infrared region, with low film resistivity, and in which the crystallization temperature can be controlled, as well as the manufacturing method thereof, and an oxide sintered compact for use in producing such transparent conductive film are provided.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: July 31, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Takami, Masakatsu Ikisawa
  • Publication number: 20180187287
    Abstract: The present invention provides a method for efficiently leaching copper from copper sulfide ore by separating and recovering iodine, and iron(III) ions to be used are regenerated by a heap of stacked ore in the method for leaching copper from copper sulfide using a sulfuric acid solution containing iodide ions and iron(III) ions as a leaching solution.
    Type: Application
    Filed: September 12, 2016
    Publication date: July 5, 2018
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Katsuyuki SATO, Akira MIURA
  • Patent number: 10006117
    Abstract: Provided is a sputtering target-backing plate assembly wherein a Cu—Cr alloy backing plate is bonded to a Ti target via a layer of a strain absorbing material placed at an interface between the Ti target and the Cu—Cr alloy backing plate. In particular, the present invention relates to a sputtering target-backing plate assembly and a production method thereof, the assembly being capable of absorbing strain at the interface between the target and the backing plate in order to prevent deformation (displacement) during sputtering. An object of the present invention is to solve a problem inherent to Titanium (Ti) and a problem in selecting a backing plate compatible with it.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 26, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Kazumasa Ohashi
  • Patent number: 9992874
    Abstract: Provided is a metal foil with a carrier as a laminated body in which a carrier A and a metal foil B are placed alternately, wherein the carrier A and the metal foil B respectively have a glossy surface, so-called ‘S surface’, and the said surfaces are laminated to face each other. The present invention relates to a copper foil with a carrier which is used for producing a single-sided laminated plate or a multilayer laminated plate of two or more layers for use in a printed wiring board. In particular, this copper foil with a carrier is used for producing a laminated plate, and its objective is to improve the handling performance during the production process of a printed board and reduce costs by increasing the yield.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: June 5, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Masayuki Takamori
  • Patent number: 9988709
    Abstract: A sintered compact magnesium oxide target for sputtering having a purity of 99.99 wt % or higher excluding C, a density of 3.57 g/cm3 or higher, and a whiteness of 60% or less. In order to uniformly deposit a magnesium oxide film, a magnesium oxide target having a higher purity and a higher density is being demanded. An object of this invention is to provide a target capable of realizing the above, and a method for producing such a target. While a magnesium oxide sintered compact sputtering target is produced by hot-pressing a raw material powder, there is a problem in that color shading occurs in roughly ?60 (within a circle having a diameter of 60 mm) at the center part of the target. Conventionally, no particularly attention was given to this problem. However, in recent years, it has become necessary to investigate and resolve this problem in order to improve the deposition quality.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: June 5, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akira Hisano, Yuichiro Nakamura
  • Patent number: 9981450
    Abstract: A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f3×t3)/(f2×t2)=>1 wherein t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2: 1<=33f1/(F×T) wherein f1 (N/mm) is 180° peeling strength between the copper foil and the resin layer, F(MPa) is strength of the copper foil composite under tensile strain of 30%, and T (mm) is a thickness of the copper foil composite, wherein a Sn layer having a thickness of 0.2 to 3.0 ?m is formed on a surface of the copper foil on which the resin layer is not laminated.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 29, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Koichiro Tanaka, Kazuki Kammuri
  • Patent number: 9982334
    Abstract: Provided is a polycrystalline silicon target produced by a melting method. In the polycrystalline silicon sputtering target, the average amount of nitride or carbide grains having a size of 100 ?m or more for samples of 100×100 mm taken from an arbitrary plane of the target is less than three. Also provided is a method of producing a polycrystalline silicon sputtering target. The method is characterized in that a silicon ingot is produced by melting silicon as a raw material with an electron beam and pouring the molten silicon into a crucible heated at 90° C. or more, and the resulting ingot is machined into a target. The present invention has focused on polycrystalline silicon produced by a melting method, and an object of the present invention is to provide a polycrystalline silicon sputtering target having high quality by reducing the presence of silicon nitride and silicon carbide and to provide a polycrystalline silicon sputtering target having a high bending strength by devising the production process.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 29, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hiroshi Takamura, Ryo Suzuki
  • Patent number: 9970099
    Abstract: A sputtering target for a magnetic recording medium, wherein an average grain area of a B-rich phase is 90 ?m2 or less. A process for producing a sputtering target for a magnetic recording medium, wherein an alloy cast ingot is subject to heat treatment, thereafter subject to primary rolling which includes at least one pass of cold rolling, thereafter subject to secondary rolling, and machined to prepare a target. The obtained sputtering target for a magnetic recording medium has few cracks in the B-rich phase and has a high leakage flux density, and by using this target, it is possible to stabilize the discharge during sputtering, suppress arcing which occurs from cracks in the B-rich phase, and suppress the generation of particles.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: May 15, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shin-Ichi Ogino, Yuichiro Nakamura
  • Patent number: 9972428
    Abstract: Provided is a neodymium-based rare earth permanent magnet having a purity of 99.9 wt % or higher excluding gas components and component elements. The present invention can remarkably improve the magnetic properties in a neodymium-based rare earth permanent magnet by highly purifying the magnetic materials. Furthermore, the present invention aims to provide a high-performance neodymium-based rare earth permanent magnet with improved heat resistance and corrosion resistance, which are inherent drawbacks of magnetic materials.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 15, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Patent number: 9951412
    Abstract: Provided is a sputtering target and/or a coil disposed at the periphery of a plasma-generating region for confining plasma. The target and/or the coil has a surface to be eroded having a hydrogen content of 500 ?L/cm2 or less. In dealing with reduction in the hydrogen content of the surface of the target and/or the coil, the process of producing the target and/or the coil, in particular, the conditions for heating the surface of the target and/or the coil, which is thought to be cause of hydrogen occlusion, are appropriately regulated. As a result, hydrogen occlusion at the surface of the target can be reduced, and the degree of vacuum during sputtering can be improved. Thus, the present invention provides a target and/or a coil that has a uniform and fine structure, makes plasma stable, and allows a film to be formed with excellent uniformity and provides a method of producing the target and/or the coil.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 24, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Nagata, Nobuhito Makino
  • Patent number: 9955583
    Abstract: The present invention provides a surface-treated copper foil capable of imparting the profile shape of the substrate surface after removal of the copper foil, the profile shape maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The present invention also provides a resin substrate provided with a profile shape of the surface maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The surface-treated copper foil of the present invention is a surface-treated copper foil having a surface-treated layer formed on a copper foil, and the surface roughness Sz of the surface of the surface-treated layer is 2 to 6 ?m.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: April 24, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masafumi Ishii, Misato Honda, Nobuaki Miyamoto
  • Patent number: 9955574
    Abstract: A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f3×t3)/(f2×t2)=>1 wherein t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2: 1<=33f1/(F×T) wherein f1 (N/mm) is 180° peeling strength between the copper foil and the resin layer, F(MPa) is strength of the copper foil composite under tensile strain of 30%, and T (mm) is a thickness of the copper foil composite, wherein a Cr oxide layer is formed at an coating amount of 5 to 100 ?g/dm2. is formed on a surface of the copper foil on which the resin layer is not laminated.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: April 24, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Koichiro Tanaka, Kazuki Kammuri
  • Patent number: 9945026
    Abstract: A sintered compact sputtering target in which a composition ratio based on atomicity is represented by a formula of (Fe100-x—Ptx)100-A—CA (provided A is a number which satisfies 20?A?50 and X is a number which satisfies 35?X?55), wherein C grains are finely dispersed in an alloy, and the relative density is 90% or higher. The production of a magnetic thin film with granular structure is provided without using an expensive simultaneous sputtering device, and a high-density sputtering target capable of reducing the amount of particles generated during sputtering is provided.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 17, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Atsushi Sato, Shin-ichi Ogino
  • Publication number: 20180102446
    Abstract: In this photoelectric conversion element wherein group III-IV compound semiconductor single crystals containing zinc as an impurity are used as a substrate, the substrate is increased in size without lowering conversion efficiency. A heat-resistant crucible is filled with raw material and a sealant, and the raw material and sealant are heated, thereby melting the raw material into a melt, softening the encapsulant, and covering the melt from the top with the encapsulant. The temperature inside the crucible is controlled such that the temperature of the top of the encapsulant relative to the bottom of the encapsulant becomes higher in a range that not equal or exceed the temperature of bottom of the encapsulant, and seed crystal is dipped in the melt and pulled upward with respect to the melt, thereby growing single crystals from the seed crystal.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Akira NODA, Masaru OTA, Ryuichi HIRANO
  • Publication number: 20180087127
    Abstract: The present invention provides a method for removing copper from lithium ion battery scrap containing copper, comprising a leaching step of adding the lithium ion battery scrap to an acidic solution and leaching the lithium ion battery scrap under a condition that an aluminum solid is present in the acidic solution; and a copper separating step of separating copper contained in the acidic solution as a solid from the acidic solution, after the leaching step.
    Type: Application
    Filed: March 29, 2016
    Publication date: March 29, 2018
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Ken ADACHI, Junichi ARAKAWA, Junichi ITO
  • Publication number: 20180087166
    Abstract: Provided is a method for efficiently separating and recovering tungsten and other valuable(s) from at least one valuable containing tungsten. The present invention relates to a method for recovering at least one valuable containing tungsten, comprising subjecting a raw material mixture comprising at least one valuable containing tungsten to electrolysis using an electrolytic solution containing at least one alcohol amine to dissolve tungsten in the electrolytic solution, electrodeposit a part of the valuable(s) onto a cathode used for the electrolysis and separate at least one valuable other than the valuable(s) electrodeposited onto the cathode as a residue in the electrolytic solution, and then separating and recovering each of the residue and the valuable(s) electrodeposited onto the cathode.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 29, 2018
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Toshifumi KAWAMURA
  • Patent number: 9930776
    Abstract: Provided is an ultrathin copper foil which has improved thickness accuracy of an ultrathin copper layer on a supporting copper foil. An ultrathin copper foil which is provided with a supporting copper foil, a releasing layer that is laminated on the supporting copper foil, and an ultrathin copper layer that is laminated on the releasing layer. The thickness accuracy of the ultrathin copper layer as determined by a weight thickness method is 3.0% or less.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: March 27, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Michiya Kohiki