Abstract: An electromagnetic device such as an electromagnetic brake or an electromagnetic coupling comprises an electromagnet, at least two parts arranged so that, when the electromagnet is switched on, a magnetic flux extends through the parts. Formations reducing residual magnetism in the parts, including a plurality of gaps formed as slots, are provided in at least one of the parts, such that this part remains a one-piece member.
Abstract: An electromagnetic brake wherein a first component is non-rotatably secured to a shaft or another rotary member and a second component of the brake is non-rotatably secured to a stationary part with freedom of movement in the axial direction of the first component. The second component contains a solenoid which is energizable to attract a friction generating liner of the second component against a disk of the first component and to thus arrest the first component. The width of the air gap between the first and second components can be adjusted by screws which extend radially of the first component or in parallelism with the axis of the first component and mesh with the stationary part. The conical or rounded tips of the screws can shift the second component toward the first component to reduce the width of the air gap. A polygonal array of leaf springs couples the second component to the stationary part and tends to move the second component axially of and away from the first component.
Abstract: An electromagnetic brake wherein a magnetizable armature is fixed to a rotary shaft in a motor or machine and a casing for a solenoid and a permanent magnet is non-rotatably fixed to a stationary member of the motor or machine with freedom of movement in the axial direction of the armature. When the solenoid is deenergized, the magnet maintains a friction liner in the casing in frictional engagement with and brakes the armature. The electromagnetic field which is established on energization of the solenoid assists a set of helical or leaf springs to overcome the force of the magnet and to disengage the liner from the armature. The liner can be disengaged from the armature independently of the solenoid and springs by a linkage or by two bolts whose heads engage a flange of the casing and whose shanks extend through registering holes of the flange and stationary member and mesh with nuts behind the stationary member.