Abstract: A rotating tool for the cutting of hardened workpieces is comprised of a base body made of steel and having a working surface. The working surface is coated with a homogeneous layer of an extremely hard material. The layer has a uniform thickness. The working surface has a plurality of microcutting grooves that extend parallel to one another and at an acute angle relative to a tangent of the working surface. Each microcutting groove has a cross-sectional profile with a cutting edge and a chip space. The extremely hard material is preferably boron nitride and the base body is preferably made of hardened steel.
Abstract: A method for recording the removal of material during high precision finishing work pieces that must be of an extremely precise shape and must withstand extreme stress, as required especially in the aviation industry, is provided which ensures that the work piece has a hardened layer of a required minimum thickness at all stressed or load-carrying positions.
Abstract: The present invention discloses a method and a device for preventing thermal damage of workpieces due to heat developed by a grinding process. According to the method the temperature increase at the surface being ground is determined and the resulting actual value is compared to a reference value which has been established under the same grinding parameters with a grinding disk that caused thermic damage to the reference workpiece. During manufacture, the grinding process with the respective grinding disk is interrupted as soon as a temperature increase has been detected that corresponds to the respective temperature causing thermic damage. The reference value is determined such that it includes a certain safety margin. The determination of the actual value and the reference value may be accomplished by using geometric deformations of the workpiece that result from the temperature increase due to the grinding process.
Abstract: A method and a device for preventing thermal damage of workpieces during grinding are provided. According to the inventive method a two-flank rolling test is performed via a master pinion before the grinding process. The result of this two-flank rolling test is then used to calculate an effective maximum amount of material to be removed. Based on a permissible amount of material to be removed per time unit for the respective grinding tool a permissible rate of advancement of the grinding tool is calculated with the determined effective maximum amount of material to be removed. The calculated rate of advancement is then fed into the machine control unit.
Abstract: A method and device for fine profiling or shaping tools coated with super-hard material, for example cubic crystalline boron nitride or diamond, especially tools coated with a single layer and having a prescribed or predetermined profile or shape. The rotatably driven tool is profiled or shaped in the region of the cutting surface by a clustered electron or laser beam which is controlled in a course corresponding to the prescribed shape or contour of the tool, and is oriented tangential to the tool; the profiling is accomplished by vaporization of the crystal tips or points which project from the desired profile. The cutting surface may be roughened in conformity to the desired profile after the fine profiling or shaping thereof. The rotatably drivable tool, and the device which produces the electron or laser beam, are mounted in such a way that a relative movement can be carried out along a prescribed path or course between the tool and the electron or laser beam, which is oriented tangential to the tool.
Abstract: An apparatus for grinding of internal, axially extending profiles, particularly for flanks on spline bore hub profiles and inner toothing, and driven by an electric motor, comprising a grinding arm of mandrel shape having a grinding wheel mounted on both sides therein, a toothed belt completely disposed inside of and running in the grinding arm operatively driving the grinding wheel. Gear wheels and the toothed belt thereabout are disposed in a channel formed in the grinding arm. An encapsulating shield completely encapsulates the grinding arm, the mounting for the grinding wheel, the toothed belt and the gear wheels. The channel constitutes a feed for oiled pressurized air to the mounting for the grinding wheel, and the grinding arm is formed with at least one separate grinding-oil channel adjacent the first mentioned channel for feeding grinding-oil to outside of the encapsulating shield adjacent the grinding wheel.