Abstract: A process for the pyrolysis of 1,2-dichloroethane (EDC) in a pyrolysis furnace (1) involves feeding liquid EDC into a convection heat transfer tube (2) for preheating, channeling an intermediate flow of preheated EDC into a radiation heat transfer tube (3) for further heating, thereby pyrolyzing a part of EDC into vinyl chloride monomer, and discharging a decomposition gas flow from the pyrolysis furnace. Potential heat is recovered from the decomposition gas by using a double tube type heat exchanger (10) consisting of outer and inner tubes, that is, by channeling the intermediate flow through the outer tube (11), channeling the decomposition gas through the inner tube (15) for heat exchange between the intermediate flow and the decomposition gas, and feeding the heat acquired intermediate flow into the radiation heat transfer tube (3).
Abstract: A process for the pyrolysis of 1,2-dichloroethane (EDC) in a pyrolysis furnace (1) involves feeding liquid EDC into a convection heat transfer tube (2) for preheating, channeling an intermediate flow of preheated EDC into a radiation heat transfer tube (3) for further heating, thereby pyrolyzing a part of EDC into vinyl chloride monomer, and discharging a decomposition gas flow from the pyrolysis furnace. Potential heat is recovered from the decomposition gas by using a double tube type heat exchanger (10) consisting of outer and inner tubes, that is, by channeling the intermediate flow through the outer tube (11), channeling the decomposition gas through the inner tube (15) for heat exchange between the intermediate flow and the decomposition gas, and feeding the heat acquired intermediate flow into the radiation heat transfer tube (3).