Patents Assigned to KLA-Tencor Corporation
  • Patent number: 11081310
    Abstract: A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel electron-bombarded charge-coupled device (EBCCD) sensors and inspection systems.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: August 3, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, John Fielden
  • Patent number: 11075126
    Abstract: A misregistration metrology system useful in manufacturing semiconductor device wafers including an optical misregistration metrology tool configured to measure misregistration at at least one target between two layers of a semiconductor device which is selected from a batch of semiconductor device wafers which are intended to be identical, an electron beam misregistration metrology tool configured to measure misregistration at the at least one target between two layers of a semiconductor device which is selected from the batch and a combiner operative to combine outputs of the optical misregistration metrology tool and the electron beam misregistration metrology tool to provide a combined misregistration metric.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 27, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Roie Volkovich, Liran Yerushalmi, Nadav Gutman
  • Patent number: 11073487
    Abstract: Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 27, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Bykanov, Nikolay Artemiev, Joseph A. Di Regolo, Antonio Gellineau, Alexander Kuznetsov, Andrei Veldman, John Hench
  • Patent number: 11047806
    Abstract: Methods and systems for discovery of defects of interest (DOI) buried within three dimensional semiconductor structures and recipe optimization are described herein. The volume of a semiconductor wafer subject to defect discovery and verification is reduced by storing images associated with a subset of the total depth of the semiconductor structures under measurement. Image patches associated with defect locations at one or more focus planes or focus ranges are recorded. The number of optical modes under consideration is reduced based on any of a comparison of one or more measured wafer level defect signatures and one or more expected wafer level defect signatures, measured defect signal to noise ratio, and defects verified without de-processing. Furthermore, verified defects and recorded images are employed to train a nuisance filter and optimize the measurement recipe. The trained nuisance filter is applied to defect images to select the optimal optical mode for production.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 29, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Santosh Bhattacharyya, Devashish Sharma, Christopher Maher, Bo Hua, Philip Measor, Robert M. Danen
  • Patent number: 11036898
    Abstract: Methods and systems for generating measurement models of nanowire based semiconductor structures based on re-useable, parametric models are presented herein. Metrology systems employing these models are configured to measure structural and material characteristics (e.g., material composition, dimensional characteristics of structures and films, etc.) associated with nanowire semiconductor fabrication processes. The re-useable, parametric models of nanowire based semiconductor structures enable measurement model generation that is substantially simpler, less error prone, and more accurate. As a result, time to useful measurement results is significantly reduced, particularly when modelling complex, nanowire based structures. The re-useable, parametric models of nanowire based semiconductor structures are useful for generating measurement models for both optical metrology and x-ray metrology, including soft x-ray metrology and hard x-ray metrology.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: June 15, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Houssam Chouaib, Alexander Kuznetsov
  • Patent number: 11035666
    Abstract: Systems and methods for determining location of critical dimension (CD) measurement or inspection are disclosed. Real-time selection of locations to take critical dimension measurements based on potential impact of critical dimension variations at the locations can be performed. The design of a semiconductor device also can be used to predict locations that may be impacted by critical dimension variations. Based on an ordered location list, which can include ranking or criticality, critical dimension can be measured at selected locations. Results can be used to refine a critical dimension location prediction model.
    Type: Grant
    Filed: February 25, 2018
    Date of Patent: June 15, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Jagdish Chandra Saraswatula, Arpit Yati, Hari Pathangi
  • Patent number: 11020862
    Abstract: A pick-and-place head for picking a plurality of work-pieces from at least one first location and for placing the plurality of work-pieces at least one second location is disclosed. The pick-and-place head exhibits a plurality of nozzles, wherein each nozzle is configured to engage one of the work-pieces by action of a vacuum. At least one nozzle has an individual vacuum supply and at least two further nozzles have a shared vacuum supply. A corresponding method is also disclosed, the method including the steps of approaching at least one of the plurality of work-pieces with a respective nozzle and then starting generation of a vacuum at each respective nozzle. The generation of vacuum in at least one nozzle is achieved by an individual vacuum supply, and generation of vacuum in at least two further nozzles is achieved by a shared vacuum supply of the at least two further nozzles.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 1, 2021
    Assignee: KLA-Tencor Corporation
    Inventor: Carl Truyens
  • Patent number: 11010886
    Abstract: Systems and methods for automatic correction of drift between inspection and design for massive pattern searching are disclosed herein. Defects are identified in a scan of a wafer. The defects are associated with tool coordinates. An SEM review tool captures centered images of the defects. The SEM review tool is aligned with the wafer using design polygons in an imported design file. Design coordinates are exported and used to define patterns of interest and identifying locations of those patterns of interest.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: May 18, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Chi-Yuan Tseng, Ming-Hsiang Hsueh
  • Patent number: 10997710
    Abstract: The present disclosure describes methods, systems, and articles of manufacture for performing a defect inspection of a die image using adaptive care areas (ACAs). The use of ACAs solve the problem of handling rotations of components that require rotating care areas; handling the situation where each care area requires its own rotation, translation, or affine transformation; and the situation of decoupling intensity differences caused by defects or process variation from intensity differences caused by size variations.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 4, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Himanshu Vajaria, Jan Lauber, Yong Zhang
  • Patent number: 10996152
    Abstract: A two-dimensional nanoindentation measurement apparatus includes a first actuator that imparts a first force in a first direction, and a second actuator that imparts a second force in a second direction orthogonal to the first direction. A first elongate member has a first end attached to the first actuator and a second end attached to an indenter tip that engages the surface of the sample. A second elongate member includes a first end attached to the second actuator and a second end connected to the second end of the first elongate member. The first elongate member is rigid in the first direction and compliant in the second direction, and the second elongate member is rigid in the second direction and compliant in the first direction. The first force is imparted to the indenter tip in the first direction through the first elongate member, and the second force is imparted to the indenter tip in the second direction through the second elongate member.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 4, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Warren C. Oliver, Kermit H. Parks, Kurt Johanns, P. Sudharshan Phani, John B. Pethica
  • Patent number: 10983227
    Abstract: Methods and systems for more efficient X-Ray scatterometry measurements of on-device structures are presented herein. X-Ray scatterometry measurements of one or more structures over a measurement area includes a decomposition of the one or more structures into a plurality of sub-structures, a decomposition of the measurement area into a plurality of sub-areas, or both. The decomposed structures, measurement areas, or both, are independently simulated. The scattering contributions of each of the independently simulated decomposed structures are combined to simulate the actual scattering of the measured structures within the measurement area. In a further aspect, measured intensities and modelled intensities including one or more incidental structures are employed to perform measurement of structures of interest. In other further aspects, measurement decomposition is employed to train a measurement model and to optimize a measurement recipe for a particular measurement application.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: April 20, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: John Hench, Antonio Arion Gellineau, Alexander Kuznetsov
  • Patent number: 10976249
    Abstract: Methods and systems for relaying an optical image using a cascade arrangement of tilted, concave mirrors are presented. An exemplary optical relay system includes a cascade arrangement of four mirrors each having concave, spherical surface figures. The first and third mirrors are configured to focus collimated wavefronts and the second and fourth mirrors re-collimate diverging wavefronts reflected from the first and third mirrors. Each mirror is tilted such that wavefronts located in the local field plane and local pupil plane of each mirror are physically separated. The magnitude and direction of each tilt angle are arranged such that off-axis aberrations introduced by each individual mirrors are largely compensated by the other mirrors. Such an optical relay system is employed to relay images of the pupil plane of a metrology system that is configured to perform accurate measurements of semiconductor structures and materials over a broad range of illumination wavelengths.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: April 13, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Andrew Hill, Gregory Brady
  • Patent number: 10970834
    Abstract: A deep learning algorithm is used for defect discovery, such as for semiconductor wafers. A care area is inspected with the wafer inspection tool. The deep learning algorithm is used to identify and classify defects in the care area. This can be repeated for remaining care areas, but similar care areas may be skipped to increase throughput.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 6, 2021
    Assignee: KLA-Tencor Corporation
    Inventor: Arpit Yati
  • Patent number: 10962951
    Abstract: Methods and metrology modules are provided, which derive landscape information (expressing relation(s) between metrology metric(s) and measurement parameters) from produced wafers, identifying therein indications for production process changes, and modify production process parameters with respect to the identified indications, to maintain the production process within specified requirements. Process changes may be detected in wafer(s), wafer lot(s) and batches, and the information may be used to detect root causes for the changes with respect to production tools and steps and to indicate tool aging and required maintenance. The information and its analysis may further be used to optimize the working point parameters, to optimizing designs of devices and/or targets and/or to train corresponding algorithms to perform the identifying, e.g., using training wafers.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: March 30, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Roie Volkovich, Yaniv Abramovitz
  • Patent number: 10964013
    Abstract: A system, method, and non-transitory computer readable medium are provided for training and applying defect classifiers in wafers having deeply stacked layers. In use, a plurality of images generated by an inspection system for a location of a defect detected on a wafer by the inspection system are acquired. The location on the wafer is comprised of a plurality of stacked layers, and each image of the plurality of images is generated by the inspection system at the location using a different focus setting. Further, a classification of the defect is determined, utilizing the plurality of images.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: March 30, 2021
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Martin Plihal, Ankit Jain
  • Patent number: 10964016
    Abstract: A best optical inspection mode to detect defects can be determined when no defect examples or only a limited number of defect examples are available. A signal for a defect of interest at the plurality of sites and for the plurality of modes can be determined using electromagnetic simulation. A ratio of the signal for the defect of interest to the noise at each combination of the plurality of sites and the plurality of modes can be determined. A mode with optimized signal-to-noise characteristics can be determined based on the ratios.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 30, 2021
    Assignee: KLA-Tencor Corporation
    Inventor: Bjorn Brauer
  • Patent number: 10957608
    Abstract: A wafer topography measurement system can be paired with a scanning electron microscope. A topography threshold can be applied to wafer topography data about the wafer, which was obtained with the wafer topography measurement system. A metrology sampling plan can be generated for the wafer. This metrology sampling plan can include locations in the wafer topography data above the topography threshold. The scanning electron microscope can scan the wafer using the metrology sampling plan and identify defects.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 23, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Arpit Yati, Shivam Agarwal, Jagdish Saraswatula, Andrew Cross
  • Patent number: 10957568
    Abstract: Disclosed are methods and apparatus for facilitating defect detection in a multilayer stack. The method includes selection of a set of structure parameters for modeling a particular multilayer stack and a particular defect contained within such particular multilayer stack and a set of operating parameters for an optical inspection system. Based on the set of structure and operating parameters, an electromagnetic simulation is performed of waves scattered from the particular multilayer stack and defect and arriving at a collection pupil of the optical inspection system.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: March 23, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Robert M. Danen, Dmitri G Starodub
  • Patent number: 10959318
    Abstract: Methods and systems for x-ray based semiconductor metrology utilizing a broadband, soft X-ray illumination source are described herein. A laser produced plasma (LPP) light source generates high brightness, broadband, soft x-ray illumination. The LPP light source directs a highly focused, short duration laser source to a non-metallic droplet target in a liquid or solid state. In one example, a droplet generator dispenses a sequence of nominally 50 micron droplets of feed material at a rate between 50 and 400 kilohertz. In one aspect, the duration of each pulse of excitation light is less than one nanosecond. In some embodiments, the duration of each pulse of excitation light is less than 0.5 nanoseconds. In some embodiments, the LPP light source includes a gas separation system that separates unspent feed material from other gases in the plasma chamber and provides the separated feed material back to the droplet generator.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 23, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Oleg Khodykin, Alexander Bykanov
  • Patent number: 10957033
    Abstract: Repeater defects on a wafer can be detected by fusing multiple die images. In an instance, multiple die images are statistically fused to form a die-fused image. Each of the die images can be of a different die on a wafer. A presence of a repeater defect is detected in the die-fused image. The die images can be generated using a laser-scanning system or other systems.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: March 23, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Premchandra M. Shankar, Ashok Varadarajan, JuHwan Rha