Patents Assigned to Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
  • Publication number: 20230298649
    Abstract: A magnetic memory device includes a conductive line that extends in a first direction, and a magnetic track line that extends in the first direction on a top surface of the conductive line. The conductive line may include a first region having a first width in a second direction, and a second region having a second width in the second direction. The first direction and the second direction are parallel to the top surface of the conductive line and are perpendicular to each other. The second width may be greater than the first width. The magnetic track line includes first domains arranged in the first direction on the first region of the conductive line, and second domains arranged in the first direction on the second region of the conductive line. A size of each of the second domains may be less than a size of each of the first domains.
    Type: Application
    Filed: January 12, 2023
    Publication date: September 21, 2023
    Applicants: Samsung Electronics Co., Ltd., Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Stuart Papworth Parkin, Jaechun Jeon, Andrea Migliorini, Ung Hwan Pi
  • Publication number: 20230284610
    Abstract: The invention relates to a method for vitrifying a biological sample. The method includes positioning a sample holder with the biological sample by a transfer device in a starting position. The sample holder has a base and a pin projecting from the base along a holder axis. Further, the biological sample is attached to the pin distant from the base. The method further comprises adding a liquid to the biological sample in the starting position by a liquid dispenser. Further, the method comprises moving the sample holder with the biological sample by the transfer device along a predetermined transfer path from the starting position to a release position, wherein the biological sample in the release position is arranged in or adjacent to a liquefied gas. It is provided that the transfer path is inclined with respect to the holder axis or runs along a circular arc. Furthermore, the invention relates to a vitrification apparatus which is configured to perform the method.
    Type: Application
    Filed: March 9, 2023
    Publication date: September 14, 2023
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.
    Inventors: Friedjof TELLKAMP, Eike-Christian SCHULZ, Hendrik SCHIKORA, Pedram MEHRABI, Martin KOLLEWE
  • Publication number: 20230287087
    Abstract: The present invention pertains in the fields of antibody technology, protein engineering, medicine, pharmacology, infection biology, virology, and medical diagnostics. More specifically, the present disclosure provides VHH antibodies that prevent cell entry of and infection by SARS-CoV-2, a strategy for an enhanced block of the homotrimeric viral spike proteins by symmetry-matching VHH-fusions, implementations of this strategy, as well as VHH antibodies for sensitive detection of SARS-CoV2-infections.
    Type: Application
    Filed: July 29, 2021
    Publication date: September 14, 2023
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Dirk GÖRLICH, Volker CORDES, Thomas GÜTTLER, Philip GUNKEL, Renate REES, Jens KRULL, Kathrin GREGOR, Waltraud TAXER, Leonie NEUMANN, Tino PLEINER, Bianka MUSSIL, Ulrike TEICHMANN, Aksu METIN, Oleh RYMARENKO, Jürgen SCHÜNEMANN, Matthias DOBBELSTEIN, Kim Maren STEGMANN, Antje DICKMANNS
  • Patent number: 11754823
    Abstract: Ethoxy-nonafluorobutane (C4F9OC2H5) is used as an immersion medium for immersing an immersion objective of a cryo-light microscope. The cryo-light microscope comprising an immersion objective, a front lens mount holding a front lens of the immersion objective, a sample holder and a cold stage carrying the sample holder further has a heating device coupling a heat flow into the front lens mount.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 12, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Thomas P. Burg, Margherita Bassu, Yara Mejia, Raffaele Faoro
  • Patent number: 11754847
    Abstract: For forming and shifting a light intensity distribution in a focal area of an objective lens, portions of coherent input light are one by one directed into non-identical two-dimensional pupil areas of a pupil of the objective lens. Each of the portions of coherent input light is collimated in the pupil. The pupil areas include a pair of two pupil areas which are axially symmetrically arranged on opposite sides of an optical axis of the objective lens. At least one of the two discrete portions of coherent input light that are directed into the pair of pupil areas is separately modulated with regard to its phase by means of an electro optical modulator such as to form the light intensity distribution in the focal area with a local intensity minimum delimited by intensity maxima and to shift the local intensity minimum laterally with regard to the optical axis.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: September 12, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Johann Engelhardt, Stefan W. Hell
  • Patent number: 11752662
    Abstract: The invention relates in a first aspect to a process for preparing a 3-dimensional body, in particular a vitreous or ceramic body, which comprises at least the following steps: a) providing an electrostatically stabilized suspension of particles; b) effecting a local destabilization of the suspension of particles by means of a localized electrical discharge between a charge injector and the suspension at a predetermined position and causing an aggregation and precipitation of the particles at said position; c) repeating step b) at different positions and causing the formation of larger aggregates until a final aggregate of particles representing a (porous) 3-dimensional body (green body) having predetermined dimensions has been formed; wherein the charge injector includes i) at least one discharge electrode which does not contact said suspension of particles or ii) a source of charged particles.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: September 12, 2023
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Amir Abdolvand, Ralf Keding
  • Patent number: 11744839
    Abstract: Method of increasing platelet counts in a subject, the method comprising administering to the subject a therapeutically effective amount of a compound that inhibits Biliverdin reductase B (BLVRB) activity by blocking a binding site of BLVRB or a pharmaceutically acceptable salt thereof, wherein the compound does not contain xanthene or acridine moiety is provided.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: September 5, 2023
    Assignees: KOREA BASIC SCIENCE INSTITUTE, University of Louisville Research Foundation, Inc., Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Kyoung-Seok Ryu, Myeongkyu Kim, Christian Griesinger, Donghan Lee
  • Publication number: 20230273418
    Abstract: A method for optimizing parameters of a physical light propagation model includes providing a physical model of a light propagation in an optical system, radiating an input light distribution using an illumination unit into an excitation path of the optical system, traversing the input light distribution through a scattering body, wherein the scattering body is arranged in the excitation path of the optical system and modifies the input light distribution to form a transmission light distribution to form a reflection light distribution, recording the transmission light distribution or the reflection light distribution, transferring the recorded transmission light distribution or the recorded reflection light distribution to the physical model, and computing transmission distortion parameters of the physical model based on the recorded transmission light distribution or the recorded reflection light distribution. The transmission distortion parameters characterize the scattering body.
    Type: Application
    Filed: July 19, 2021
    Publication date: August 31, 2023
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V
    Inventors: IVAN VISHNIAKOU, JOHANNES DOMINIK SEELIG
  • Publication number: 20230274772
    Abstract: A magnetic memory device may include a magnetic track, which is extended in a first direction, and a first electrode, which is provided at a biasing point of the magnetic track and is configured to apply a voltage to the magnetic track. The magnetic track includes a first region between a first end of the magnetic track and the biasing point and a second region between the biasing point and a second end of the magnetic track. The first electrode may be configured to cause a difference between a current density in the first region and a current density in the second region.
    Type: Application
    Filed: January 12, 2023
    Publication date: August 31, 2023
    Applicants: Samsung Electronics Co., Ltd., Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Stuart Papworth Parkin, Jaechun Jeon, Andrea Migliorini, Ung Hwan Pi
  • Patent number: 11739358
    Abstract: The present invention relates to an enzyme-catalyzed process for producing UDP-galactose from low-cost substrates uridine monophosphate and D-galactose in a single reaction mixture. The process can be operated (semi)continuously or in batch mode. The process can be extended to uridine as starting material instead of uridine monophosphate. Further, the process can be adapted to produce galactosylated molecules and biomolecules including saccharides, proteins, peptides, glycoproteins or glycopeptides, particularly human milk oligosaccharides (HMO) and (monoclonal) antibodies.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 29, 2023
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Reza Mahour, Thomas F. T. Rexer
  • Publication number: 20230268706
    Abstract: A broadband light source device for creating broadband light pulses includes a hollow-core fiber and a pump laser source device. The hollow-core fiber is configured to create the broadband light pulses by an optical non-linear broadening of pump laser pulses. The hollow-core fiber includes a filling gas, an axial hollow light guiding fiber core configured to support core modes of a guided light field, and an inner fiber structure surrounding the fiber core and configured to support transverse wall modes of the guided light field. The pump laser source device is configured to create and provide the pump laser pulses at an input side of the hollow-core fiber. The transverse wall modes include a fundamental transverse wall mode and second and higher order transverse wall modes.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 24, 2023
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Patrick Sebastian UEBEL, Philip St. J. RUSSELL, Sebastian Thomas BAUERSCHMIDT
  • Patent number: 11733451
    Abstract: A hollow-core anti-resonant-reflecting fibre (HC-AF) includes a hollow-core region, an inner cladding region, and an outer cladding region. The hollow-core region axially extends along the HC-AF. The inner cladding region includes a plurality of anti-resonant elements (AREs) and surrounds the hollow-core region. The outer cladding region surrounds the inner cladding region. The hollow-core region and the plurality of AREs are configured to provide phase matching of higher order hollow-core modes and ARE modes in a broadband wavelength range.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Philip Russell, Patrick Uebel, Michael Henoch Frosz
  • Patent number: 11731025
    Abstract: Techniques for providing acoustic feedback are disclosed. Several audio clips (21-23) have a synchronized beat. A sensor signal (16) received from a sensor has a sensor signal range divided by first and second thresholds (11, 12) into at least three sensor signal sub-ranges (13-15). An audio signal is output in response to the received sensor signal (16), the output audio signal comprising one or more of the audio clips. If the received sensor signal (16) exceeds the first threshold (11), at least one (21) of the one or more audio clips is discontinued and/or at least one additional audio clip (22) of the audio clips is initiated in synchronization with the one or more audio clips (21). If the received sensor signal (16) falls below the second threshold (12), at least one (21) of the one or more audio clips is discontinued and/or at least one additional audio clip (23) of the audio clips is initiated in synchronization with the one or more audio clips (21).
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: August 22, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Thomas Fritz, Eric Busch, Silvio Borchardt, Dirk Gummel
  • Patent number: 11717142
    Abstract: The invention relates to a method of simultaneously calibrating magnetic actuation and sensing systems for a workspace, wherein the actuation system comprises a plurality of magnetic actuators and the sensing system comprises a plurality of magnetic sensors, wherein all the measured data is fed into a calibration model, wherein the calibration model is based on a sensor measurement model and a magnetic actuation model, and wherein a solution of the model parameters is found via a numerical solver order to calibrate both the actuation and sensing systems at the same time.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 8, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V
    Inventors: Metin Sitti, Donghoon Son, Xiaoguang Dong
  • Publication number: 20230227520
    Abstract: The present invention relates to a protein having G-CSF-like activity comprising a) one or two polypeptide chains; b) a bundle of four ?-helices; and c) two or three amino acid linkers that connect contiguous bundle-forming ?-helices that are located on the same polypeptide chain, wherein each amino acid linker has a length between 2 and 20 amino acids. The invention also provides for a polynucleotide and a vector encoding the protein of the invention, host cells comprising said polynucleotide, a method for producing the protein of the invention and a pharmaceutical composition comprising the protein of the invention. The invention further relates to uses of the proteins of the invention as a research reagent and the use of the protein and/or pharmaceutical composition comprising the same as a medicament, e.g., for use in increasing stem cell production, for use in inducing hematopoiesis and/or for use in mobilizing hematopoietic stem cells.
    Type: Application
    Filed: December 17, 2020
    Publication date: July 20, 2023
    Applicants: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Eberhard Karls Universität Tübingen
    Inventors: Mohammad ELGAMACY, Birte HERNANDEZ ALVAREZ, Yulia SKOKOWA
  • Patent number: 11697800
    Abstract: In a first aspect, the present invention relates to a method for the purification of virus compositions as well as biological macromolecular compounds in a sample comprising mixing the sample with osmolytes, like non-ionic organic polymers and contacting the mixed sample with a hydrophilic membrane, optionally washing the membrane, and eluting the virus preparations or biological macromolecular components from the membrane with an eluting solution containing reduced amounts or no osmolytes, like non-ionic organic polymer. Moreover, virus compositions and biological macromolecular components obtainable with the method according to the present invention are provided as well as the use of the method according to the present invention for purification of virus compositions including whole virus particles and virus-like particles or biological macromolecular components.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: July 11, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Michael Wolff, Michael Martin Pieler, Udo Reichl, Pavel Marichal-Gallardo
  • Publication number: 20230215681
    Abstract: The invention relates to a device (100) for reducing ice contamination of a sample (S) in a chamber (210) of a focused ion beam milling apparatus (200), wherein the device (100) comprises a body (110) configured to be cooled to cryogenic temperatures, wherein the body (110) comprises an aperture (111), which is configured such that an ion beam (I) generated by an ion source (220) can pass from the ion source (220) through the aperture (111) to the sample (S), wherein the body (110) comprises a recess (112), wherein said aperture (111) is arranged in the recess (112). The invention further relates to a focused ion beam milling apparatus (200) and a method for focused ion beam milling of a sample (S).
    Type: Application
    Filed: May 28, 2021
    Publication date: July 6, 2023
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E. V.
    Inventors: Sebastian TACKE, Stefan RAUNSER
  • Patent number: 11694640
    Abstract: The invention relates to a system for displaying information to a user, comprising: an emission device arranged to emit light so as to display information to a user, the emission device being adapted to emit the light in a pulsed manner so that the intensity of the light varies between a high value and a low value, a selective viewing device comprising a panel, the panel being adapted so that the user can view the light which is emitted by the emission device through that panel so as to visually perceive the information being displayed, the panel having a variable transparency which can be varied between a state of high transparency and a state of low transparency, the system being adapted to synchronize the emission device and the selective viewing device so that the states of the emission device emitting light at a high-intensity value and the states of the panel of the selective viewing device of high transparency overlap in time, the emission device being adapted so that the light is emitted in a pulse
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: July 4, 2023
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Ivan C. Baines, Moritz Kreysing
  • Patent number: 11688992
    Abstract: A broadband light source device for creating broadband light pulses includes a hollow-core fiber and a pump laser source device. The hollow-core fiber is configured to create the broadband light pulses by an optical non-linear broadening of pump laser pulses. The hollow-core fiber includes a filling gas, an axial hollow light guiding fiber core configured to support core modes of a guided light field, and an inner fiber structure surrounding the fiber core and configured to support transverse wall modes of the guided light field. The pump laser source device is configured to create and provide the pump laser pulses at an input side of the hollow-core fiber. The transverse wall modes include a fundamental transverse wall mode and second and higher order transverse wall modes.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: June 27, 2023
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Patrick Sebastian Uebel, Philip St. J. Russell, Sebastian Thomas Bauerschmidt
  • Patent number: 11682763
    Abstract: The present invention relates to an electrode material comprising at least one sulfur-limonene sulfide component or a composite of the sulfur-limonene sulfide component with a first conductive component; electrodes, in particular cathodes, containing the electrode material; half-cells, cells, and batteries containing the electrodes; and processes for obtaining the electrode material, the electrode, the half-cell, the cell, and the battery comprising electrode material and/or electrodes of the present invention.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 20, 2023
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E. V.
    Inventors: Feixiang Wu, Yan Yu, Joachim Maier