Patents Assigned to MiCell Technologies, Inc.
  • Patent number: 7648818
    Abstract: Methods for carrying out lithography with a carbon dioxide development system are described. This invention involves methods for preferential removal of the darkfield region of conventional chemically amplified positive tone resists. The carbon dioxide development systems include one or more derivatizing agents, which may be an onium salt or a neutral compound.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: January 19, 2010
    Assignee: MiCell Technologies, Inc.
    Inventors: Mark Wagner, James DeYoung
  • Publication number: 20090292351
    Abstract: Provided herein is a device comprising: a. stent; b. a plurality of layers on said stent framework to form said device; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least part of the active agent is in crystalline form.
    Type: Application
    Filed: April 17, 2009
    Publication date: November 26, 2009
    Applicant: MICELL TECHNOLOGIES, INC.
    Inventors: James B. McClain, Douglas Taylor
  • Patent number: 7592035
    Abstract: A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 22, 2009
    Assignee: Micell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Doug Taylor, Mark I. Wagner, David Brainard
  • Publication number: 20090186069
    Abstract: A method for depositing a coating comprising a polymer and at least two pharmaceutical agents on a substrate, comprising the following steps: providing a stent framework; depositing on said stent framework a first layer comprising a first pharmaceutical agent; depositing a second layer comprising a second pharmaceutical agent; Wherein said first and second pharmaceutical agents are selected from two different classes of pharmaceutical agents.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 23, 2009
    Applicant: MICELL TECHNOLOGIES, INC.
    Inventors: James DeYoung, Doug Taylor, Jim McClain, Clint Smoke, Mike Cole
  • Publication number: 20090062909
    Abstract: A coated coronary stent, comprising: a stainless steel sent framework coated with a primer layer of Parylene C; and a rapamycin-polymer coating having substantially uniform thickness disposed on the stent framework, wherein the rapamycin-polymer coating comprises polybutyl methacrylate (PBMA), polyethylene-co-vinyl acetate (PEVA) and rapamycin, wherein substantially all of the rapamycin in the coating is in amorphous form and substantially uniformly dispersed within the rapamycin-polymer coating.
    Type: Application
    Filed: July 14, 2006
    Publication date: March 5, 2009
    Applicant: Micell Technologies, Inc.
    Inventors: Doug Taylor, James Deyoung, Jim McCain
  • Patent number: 7410751
    Abstract: Methods for carrying out lithography with a carbon dioxide development system are described. In some embodiments the methods involve preferential removal of a darkfield region; in other embodiments the methds involve preferential removal of a light field region. The carbon dioxide development systems include a quaternary ammonium salt, preferably a quaternary ammonium hydroxide, halide, or carbonate. Compositions for carrying out the methods are also described. The quaternary ammonium salts preferably contain at least one CO2-philic group, such as a siloxane-containing group or a fluorine-containing group.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: August 12, 2008
    Assignee: Micell Technologies, Inc.
    Inventors: James DeYoung, Mark Wagner
  • Patent number: 7407703
    Abstract: An air permeable composite article that in one embodiment includes a porous base membrane that includes a plurality of nodes and fibrils defining a plurality of interconnecting pores extending through the porous base membrane with each node and fibril having a surface. The composite article also includes a precipitated coating material deposited on the surfaces of the plurality of nodes and fibrils. The coating material includes a copolymer formed from a fluorinated acrylate or methacrylate, an n-alkyl acrylate or methacrylate, and an isocyanate crosslinker. The precipitated coating material provides oil and contaminating agent resistance of at least a number six measured in accordance with AATCC 118 test method.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 5, 2008
    Assignees: BHA Group, Inc., Micell Technologies, Inc.
    Inventors: James DeYoung, Robert J. Klare
  • Patent number: 7329483
    Abstract: A method for carrying out positive tone lithography with a carbon dioxide development system is carried out by: (a) providing a substrate, the substrate having a polymer resist layer formed thereon, (b) exposing at least one portion of the polymer resist layer to radiant energy causing a chemical shift to take place in the exposed portion and thereby form at least one light field region in the polymer resist layer while concurrently maintaining at least one portion of the polymer layer unexposed to the radiant energy to thereby form at least one dark field region in the polymer resist layer; (c) optionally baking the polymer resist layer; (d) contacting the polymer resist layer to a carbon dioxide solvent system, the solvent system comprising a polar group, under conditions in which the at least one light field region is preferentially removed from the substrate by the carbon dioxide solvent system as compared to the at least one dark field region; wherein the carbon dioxide solvent system comprises a first p
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 12, 2008
    Assignee: Micell Technologies, Inc.
    Inventors: Mark Wagner, James DeYoung, Merrick Miles, Chris Harbinson
  • Publication number: 20070154848
    Abstract: A method for carrying out positive tone lithography with a carbon dioxide development system is carried out by: (a) providing a substrate, the substrate having a polymer resist layer formed thereon, (b) exposing at least one portion of the polymer resist layer to radiant energy causing a chemical shift to take place in the exposed portion and thereby form at least one light field region in the polymer resist layer while concurrently maintaining at least one portion of the polymer layer unexposed to the radiant energy to thereby form at least one dark field region in the polymer resist layer; (c) optionally baking the polymer resist layer; (d) contacting the polymer resist layer to a carbon dioxide solvent system, the solvent system comprising a polar group, under conditions in which the at least one light field region is preferentially removed from the substrate by the carbon dioxide solvent system as compared to the at least one dark field region; wherein the carbon dioxide solvent system comprises a first p
    Type: Application
    Filed: March 12, 2007
    Publication date: July 5, 2007
    Applicant: Micell Technologies, Inc.
    Inventors: Mark Wagner, James DeYoung, Merrick Miles, Chris Harbinson
  • Patent number: 7235347
    Abstract: A method for carrying out positive tone lithography with a carbon dioxide development system is carried out by: (a) providing a substrate, the substrate having a polymer resist layer formed thereon, (b) exposing at least one portion of the polymer resist layer to radiant energy causing a chemical shift to take place in the exposed portion and thereby form at least one light field region in the polymer resist layer while concurrently maintaining at least one portion of the polymer layer unexposed to the radiant energy to thereby form at least one dark field region in the polymer resist layer; (c) optionally baking the polymer resist layer; (d) contacting the polymer resist layer to a carbon dioxide solvent system, the solvent system comprising a polar group, under conditions in which the at least one light field region is preferentially removed from the substrate by the carbon dioxide solvent system as compared to the at least one dark field region; wherein the carbon dioxide solvent system comprises a first p
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: June 26, 2007
    Assignee: Micell Technologies, Inc.
    Inventors: Mark Wagner, Merrick Miles, Chris Harbinson
  • Patent number: 7141496
    Abstract: A method of treating a dielectric surface portion of a semiconductor substrate, comprising the steps of: (a) providing a semiconductor substrate having a dielectric surface portion; and then (b) treating said dielectric surface portion with a coating reagent, the coating reagent comprising a reactive group coupled to a coordinating group, with the coordinating group having a metal bound thereto, so that the metal is deposited on the dielectric surface portion to produce a surface portion treated with a metal.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: November 28, 2006
    Assignee: MiCell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Doug Taylor, Mark I. Wagner, David Brainard
  • Patent number: 7044143
    Abstract: Microelectronic substrate processing systems include a microelectronic substrate processing chamber that is configured to contain therein at least one microelectronic substrate. A carbon dioxide supply system is configured to supply densified carbon dioxide to the microelectronic substrate processing chamber. A detergent supply system is configured to supply detergent to the microelectronic substrate processing chamber.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: May 16, 2006
    Assignee: Micell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross
  • Patent number: 6989172
    Abstract: A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: January 24, 2006
    Assignee: Micell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Doug Taylor, Mark I. Wagner, David Brainard
  • Patent number: 6953041
    Abstract: Compositions useful for cleaning metal from a substrate or coating metal onto a substrate are described: Such compositions comprise (a) a densified carbon dioxide continuous phase; (b) a polar discrete phase in said carbon dioxide continuous phase; (c) a metal in said discrete phase (i.e., a metal removed from the substrate, or to be coated onto the substrate); (d) at least one ligand in said continuous phase, said discrete phase, or both said continuous and said discrete phase.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: October 11, 2005
    Assignee: MiCell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Mark I. Wagner
  • Patent number: 6905555
    Abstract: A method of displacing a supercritical fluid from a pressure vessel (e.g., in a microelectronic manufacturing process), with the steps of: providing an enclosed pressure vessel containing a first supercritical fluid (said supercritical fluid preferably comprising carbon dioxide); adding a second fluid (typically also a supercritical fluid) to said vessel, with said second fluid being added at a pressure greater than the pressure of the first supercritical fluid, and with said second fluid having a density less than that of the first supercritical fluid; forming an interface between the first supercritical fluid and the second fluid; and displacing at least a portion of the first supercritical fluid from the vessel with the pressure of the second, preferably fluid while maintaining the interface therebetween.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 14, 2005
    Assignee: MiCell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Mark I. Wagner
  • Patent number: 6782900
    Abstract: An apparatus for cleaning a microelectronic substrate includes a pressure chamber, a supply of a process liquid including dense phase CO2 fluidly connected to the chamber and a distilling system. Distilling system includes a still fluidly connected to the chamber and operative to separate CO2 from the process fluid. The distilling system is operative to re-introduce the separated CO2 into the chamber or a further chamber.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: August 31, 2004
    Assignee: Micell Technologies, Inc.
    Inventors: James DeYoung, James B. McClain, Michael E. Cole, Steven Lee Worm, David Brainard
  • Patent number: 6763840
    Abstract: Methods for cleaning a microelectronic substrate in a cluster tool are described that include placing the substrate in a pressure chamber of a module in a cluster tool; pressurizing the pressure chamber; introducing liquid CO2 into the pressure chamber; cleaning the substrate in the pressure chamber; removing the liquid CO2 from the pressure chamber, depressurizing the pressure chamber, and removing the substrate from the pressure chamber. Apparatus for processing a microelectronic substrate are also disclosed that that include a transfer module, a first processing module that employs liquid carbon dioxide as a cleaning fluid coupled to the transfer module, a second processing module coupled to the transfer module, and a transfer mechanism coupled to the transfer module. The transfer mechanism is configured to move the substrate between the first processing module and the second processing module.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: July 20, 2004
    Assignee: Micell Technologies, Inc.
    Inventors: Joseph M. DeSimone, James P. DeYoung, James B. McClain
  • Patent number: 6743078
    Abstract: Methods and apparatus for chemical mechanical planarization of an article such as a semiconductor wafer use polishing slurries including a carbon dioxide solvent or a carbon dioxide-philic composition. A carbon dioxide cleaning solvent step and apparatus may also be employed.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 1, 2004
    Assignee: Micell Technologies, Inc.
    Inventors: James B. McClain, Joseph M. DeSimone
  • Patent number: 6730612
    Abstract: A process chamber assembly for use with a substrate and a flow of process fluid includes a vessel and a spray member. The vessel defines a chamber. The spray member includes at least one spray port formed therein adapted to distribute the flow of process fluid onto the substrate in the chamber. The spray member is operative to rotate about a rotational axis relative to the vessel responsive to a flow of the process fluid out of the spray member through the at least one spray port.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: May 4, 2004
    Assignee: Micell Technologies, Inc.
    Inventors: Steven Lee Worm, Michael E. Cole
  • Patent number: 6711773
    Abstract: A system for the controlled addition of detergent formulations and the like to a carbon dioxide cleaning apparatus comprises: (a) a high pressure wash vessel; (b) an auxiliary vessel; (c) a drain line connecting the auxiliary vessel to the wash vessel; (d) optionally but preferably, a separate vent line connecting the auxiliary vessel to the wash vessel; (e) a detergent reservoir; and (f) a detergent supply line connecting the detergent reservoir to the auxiliary vessel. An advantage of this apparatus is that, because the detergent formulation can be pumped into the auxiliary vessel in a predetermined aliquot or amount, which predetermined aliquot or amount can then be transferred into the wash vessel where it combines with the liquid carbon dioxide cleaning solution, the detergent formulation can be added to the cleaning solution in a more controlled or accurate manner.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: March 30, 2004
    Assignee: MiCell Technologies, Inc.
    Inventors: James P. DeYoung, Timothy J. Romack, James B. McClain