Patents Assigned to Mitsubishi Aluminum Co., Ltd.
  • Publication number: 20210001436
    Abstract: An aluminum alloy clad material having four layers includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material which clads the other surface thereof on one surface of the sacrificial material on an opposite side to the core material, the brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance, and satisfying (Bi+Mg)×Sr?0.1, Mg—Bi-based compounds contained in the brazing material with a diameter of 0.1-5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, and the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.1% to 0.7%, and a balance consisting of Al and inevitable impurities.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20200216933
    Abstract: An aluminum alloy foil has a composition containing 1.0% by mass or more and 1.8% by mass or less of Fe, more than 0.10% by mass and 0.20% by mass or less of Si, 0.005% by mass or more and 0.05% by mass or less of Cu, and Mn regulated to be 0.01% by mass or less, with the balance consisting of Al and incidental impurities, wherein, with regard to crystal grains surrounded by high inclination angle grain boundaries which are grain boundaries having a misorientation of 15° or more in analysis of crystal orientation per unit area using electron backscatter diffraction, an average grain size of the crystal grains is 10 ?m or less, and a maximum grain size of the crystal grains/the average grain size of the crystal grains?3.0, and when a thickness of the foil is 30 ?m, elongations in directions making 0°, 45° and 90° with respect to a rolling direction are each 25% or more respectively.
    Type: Application
    Filed: September 6, 2017
    Publication date: July 9, 2020
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Takashi SUZUKI
  • Publication number: 20200123639
    Abstract: An aluminum alloy foil has a composition containing 1.0% to 1.8% by mass of Fe, 0.01% to 0.10% by mass of Si, 0.005% to 0.05% by mass of Cu, and Mn regulated to be 0.01% by mass or less, with the balance consisting of Al and incidental impurities. With regard to crystal grains surrounded by high inclination angle grain boundaries which are grain boundaries having a misorientation of 15° or more in analysis of crystal orientation per unit area using electron backscatter diffraction, an average grain size of the crystal grains is 5 ?m or less, and a maximum grain size of the crystal grains/the average grain size of the crystal grains ?3.0. When a thickness of the foil is 30 ?m, elongations in directions making 0°, 45° and 90° with respect to a rolling direction are 25% or more respectively.
    Type: Application
    Filed: September 6, 2017
    Publication date: April 23, 2020
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Takashi SUZUKI
  • Publication number: 20200115778
    Abstract: An aluminum alloy fin material and a heat exchanger having excellent moldability, strength, resistance to brazing erosion and durability are provided. The aluminum alloy fin material has a composition comprising, in % by mass, Zr: 0.05 to 0.3%, Mn: 1.8 to 2.5%, Si: 0.7 to 1.3%, Fe: 0.05 to 0.5%, Cu: 0.25 to 0.7%, Zn: 2.0 to 5.0%, with the balance being Al and inevitable impurities, wherein a ratio of Mn/Si in terms of content is in a range of 1.5 to 2.9, and the aluminum alloy fin material has a tensile strength before brazing of 210 to 280 MPa, a tensile strength after brazing of 175 MPa or more, an electrical conductivity after brazing of 37% IACS or more, and a solidus temperature of 605° C. or more, and has a crystal grain structure before brazing of a non-recrystallized grain structure, and has an average crystal grain size in a rolled surface after brazing of 300 ?m to 2,000 ?m.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Applicants: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATION
    Inventors: Michihide YOSHINO, Shohei IWAO, Tetsuya YAMAMOTO, Takahiro SHINODA, Koichi NAKASHITA
  • Publication number: 20200115779
    Abstract: An aluminum alloy fin material and a heat exchanger having excellent moldability, strength, resistance to brazing erosion and durability are provided. The aluminum alloy fin material has a composition comprising Mn: 1.8 to 2.5%, Si: 0.7 to 1.3%, Fe: 0.05 to 0.3%, Cu: 0.14 to 0.30%, Zn: 1.3 to 3.0%, with the balance being Al and inevitable impurities, wherein a ratio Mn/Si in terms of content is in a range of 1.5 to 2.9, and the aluminum alloy fin material has a solidus temperature of 610° C. or more, a tensile strength before brazing of 220 to 270 MPa, has a crystal grain structure before brazing of a non-recrystallized grain structure, and has a tensile strength after brazing of 160 MPa or more, an electrical conductivity after brazing of 40% IACS or more and an average crystal grain size in a rolled surface after brazing of 300 ?m to 2,000 ?m.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Applicants: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATION
    Inventors: Michihide YOSHINO, Shohei IWAO, Tetsuya YAMAMOTO, Takahiro SHINODA, Koichi NAKASHITA
  • Publication number: 20200086428
    Abstract: A brazing sheet for flux-free brazing has an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 2 to 13% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 4 to 13% Si and 0.1 to 5.0% Mg in mass %, which are cladded on one or both sides of a core material. In the outermost surface brazing filler metal layer, the number of Si particles having a circle equivalent diameter of 1.75 ?m or more is 10% or more of the number having a circle equivalent diameter of 0.8 ?m or more, as observed in the direction of the surface layer. The intermediate brazing filler metal layer contains less than 3000 per 10000 ?m2 of Si particles having a circle equivalent diameter of 0.25 ?m or more, as observed in a cross section of the brazing filler metal layer.
    Type: Application
    Filed: October 12, 2017
    Publication date: March 19, 2020
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki MIYAKE
  • Publication number: 20200047290
    Abstract: In a mixed composition coating material for brazing, when a total mass of a solid material, an organic solvent, and water is defined as 100 mass %, the solid material are contained in an amount of 30 mass % or greater and 80 mass % or less with respect to the whole coating material, the organic solvent and the water is contained in a total amount of 20 mass % or greater and 70 mass % or less with respect to the whole coating material, and the water is contained in an amount of 0.4 mass % or greater and 2.5 mass % or less with respect to the whole coating material.
    Type: Application
    Filed: January 22, 2018
    Publication date: February 13, 2020
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Masaya KATSUMATA, Yasunori HYOGO
  • Patent number: 10544993
    Abstract: A cooling device including: a base block having a first length and a first thickness and having a mounting side on which a heat-generating body is installed along a first vertical direction. The cooling device further includes a pipe unit, including a tank buried at an opposite side to the mounting side of the base block for storing a coolant, and pipes which are connected to the tank and are parallel to one another. Heat radiation fins are disposed on the pipes in a state in which the pipes penetrate the heat radiation fins. The cooling device in which the tank is formed has a flattened shape and a smaller dimension along a first thickness direction of the base block than a height dimension along the first length of the block. Each of the pipes are connected to an upper position of the tank with respect to the height dimension.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: January 28, 2020
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Hiroshi Takemura, Yasuhito Sueki, Shun-ichi Sata, Tokio Hisano
  • Patent number: 10518363
    Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 31, 2019
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide Yoshino, Masakazu Edo
  • Publication number: 20190344318
    Abstract: A heat transfer tube is made of aluminum and includes a streak-shaped Zn diffusion layer (6, 106) which is spirally formed on a circular outer peripheral surface in a length direction. According to this heat transfer tube, even in a case where rainwater or dew concentration water is intensively accumulated in a portion of the outer peripheral surface in a circumferential direction, it is possible to obtain a sufficient corrosion resistance.
    Type: Application
    Filed: November 30, 2017
    Publication date: November 14, 2019
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yusuke NAKAURA, Yuki HATERUMA, Hideo KUME, Takuya OKAWA
  • Publication number: 20190337074
    Abstract: Brazing sheet for flux-free brazing, wherein an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 4 to 12% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass %, are cladded on one side or both sides of a core material, and wherein aluminum members are joined to each other without using flux in a non-oxidizing gas atmosphere under normal pressure with an oxygen concentration of 300 ppm or less, using the brazing sheets.
    Type: Application
    Filed: June 5, 2017
    Publication date: November 7, 2019
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki MIYAKE
  • Patent number: 10384312
    Abstract: The present invention relates to an aluminum alloy brazing sheet with a thickness of 0.30 nm or less, including: a core material; a sacrificial material cladding one surface of the core material; and a brazing material cladding the other surface of the core material, in which the core material is made of A1—Mn—Si-based aluminum alloy containing by mass %, Cu: 0.5 to 1.3%, the sacrificial material is made of aluminum alloy containing, by mass %, Zn: 4.0 to 7.0%, the brazing material is made of aluminum alloy containing, by mass %, Si: 6.0 to 11.0% and Zn: 0.1 to 3.0%, in a pitting potential after brazing beat treatment, a thickness of a region in which a potential difference from the noblest potential in the core material is 100 mV or more is 10% to 50% of the thickness of the brazing sheet.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: August 20, 2019
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Sho Ishigami, Shohei Iwao
  • Patent number: 10386134
    Abstract: A heat transfer tube includes: a tube body made of an extruded material of an aluminum alloy having a composition including: 0.3 mass % or more and less than 0.8 mass % of Mn; more than 0.1 mass % and less than 0.32 mass % of Si; 0.3 mass % or less of Fe; 0.06 mass % or more and 0.3 mass % or less of Ti; and Al balance including inevitable impurities, a ratio of a Mn content to a Si content, Mn %/Si %, exceeding 2.5; and a Zn-containing layer provided to an outer surface of the tube body.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: August 20, 2019
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Hiroki Furumura, Yasunori Hyogo
  • Patent number: 10378088
    Abstract: [Problem] There is provided an aluminum alloy fin material with high strength, superior brazability and superior corrosion resistance. [Solving means] An aluminum alloy fin material has a composition, in % by mass, of the following: Zr: 0.05 to 0.25%, Mn: 1.3 to 1.8%, Si: 0.7 to 1.3%, Fe: 0.10 to 0.35%, and Zn: 1.2 to 3.0%, the remainder being Al and inevitable impurities. The aluminum alloy fin material has a solidus temperature of 615° C. or higher, a tensile strength after brazing of 135 MPa or higher, a pitting potential after brazing in the range of ?900 to ?780 mV, and an average crystal grain diameter in a rolled surface after brazing in the range of 200 ?m to 1,000 ?m.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 13, 2019
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide Yoshino, Masakazu Edo
  • Publication number: 20190211423
    Abstract: A foil is manufactured as an aluminum alloy hard thin foil, wherein the aluminum alloy hard thin foil has an alloy composition wherein a content of Fe is 0.05 to 2.0% by mass, with the balance being aluminum and inevitable impurities; a recrystallization completion temperature is 250° C. or less; and a foil thickness of 5 to 50 ?m. The aluminum alloy hard thin foil can be obtained by subjecting an aluminum alloy having, for example, a composition wherein a total content of Cu, Mg, Cr and Zr is 0.05% by mass or less, and a content of Mn is 0.05% by mass or less to intermediate annealing once or more during cold rolling and subjecting the resulting alloy to cold rolling wherein a reduction ratio from after final intermediate annealing to after final cold rolling is 85% or more.
    Type: Application
    Filed: August 15, 2017
    Publication date: July 11, 2019
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hiroaki NISHIDA
  • Publication number: 20190160504
    Abstract: A method produces an inner spiral grooved tube using a first drawing die, a second drawing die, and a revolving flyer. The method includes two twisting-drawing steps. The first twisting-drawing step forms an intermediate twisted tube by reducing the diameter of a linear grooved tube, which has plural straight grooves formed along the longitudinal direction on its inner surface, by passing the linear grooved tube through the first drawing die and then by revolving the liner grooved tube wrapped around the revolving flyer with the revolving flyer, in conjunction with imparting twist to the linear grooved tube. The second twisting-drawing step forms the inner spiral grooved tube by reducing the diameter of the intermediate twisted tube by passing the intermediate twisted tube, which revolves with the revolving flyer, through the second drawing die in conjunction with imparting twist to the intermediate twisted tube.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yusuke NAKAURA, Yuki Hateruma
  • Publication number: 20180154412
    Abstract: A method of producing an inner spiral grooved tube using a first drawing die using first and second drawing dice and a revolving flyer is provided. The method includes a first twisting-drawing step to form an intermediate twisted tube by reducing a diameter of a linear grooved tube, on an inner surface of which a plurality of straight grooves is formed along with a longitudinal direction, in conjunction with imparting twist to the linear grooved tube by passing the linear grooved tube through the first drawing die and then by revolving the liner grooved tube by wrapping the linear grooved tube around the revolving flyer; and a second twisting-drawing step to form an inner spiral grooved tube by reducing a diameter of the intermediate twisted tube by passing the intermediate twisted tube, which revolves with the revolving flyer, through the second drawing die in conjunction with imparting twist to the intermediate twisted tube.
    Type: Application
    Filed: May 6, 2016
    Publication date: June 7, 2018
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yusuke NAKAURA, Yuki HATERUMA
  • Publication number: 20180093309
    Abstract: A method in accordance with the present application includes sending a raw tube from a drum to an unwinding side capstan while the raw tube is rotated around a central axis perpendicular to a winding shaft of the drum by rotating the drum and the unwinding side capstan about the central axis concurrently with unwinding of the raw tube from the drum holding the raw tube, on an inner surface of which multiple straight grooves along a longitudinal direction of the raw tube are formed with an interval in a circumferential direction, in a coil shape, to wind the raw tube around the unwinding side capstan, and drawing in which the unwound raw tube is drawn while the diameter of the raw tube is reduced, and then the raw tube is wound around the drawing side capstan to twist the raw tube and obtain an inner spiral grooved tube.
    Type: Application
    Filed: November 13, 2017
    Publication date: April 5, 2018
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yusuke NAKAURA, Takeshi SAKAGAMI, Yuki HATERUMA
  • Publication number: 20180094881
    Abstract: A heat transfer tube includes: a tube body made of an extruded material of an aluminum alloy having a composition including: 0.3 mass % or more and less than 0.8 mass % of Mn; more than 0.1 mass % and less than 0.32 mass % of Si; 0.3 mass % or less of Fe; 0.06 mass % or more and 0.3 mass % or less of Ti; and Al balance including inevitable impurities, a ratio of a Mn content to a Si content, Mn %/Si %, exceeding 2.5; and a Zn-containing layer provided to an outer surface of the tube body.
    Type: Application
    Filed: November 21, 2017
    Publication date: April 5, 2018
    Applicant: Mitsubishi Aluminum Co. , Ltd.
    Inventors: Hiroki Furumura, Yasunori Hyogo
  • Publication number: 20180043476
    Abstract: The present invention relates to an aluminum alloy brazing sheet with a thickness of 0.30 nm or less, including: a core material; a sacrificial material cladding one surface of the core material; and a brazing material cladding the other surface of the core material, in which the core material is made of A1—Mn—Si-based aluminum alloy containing by mass %, Cu: 0.5 to 1.3%, the sacrificial material is made of aluminum alloy containing, by mass %, Zn: 4.0 to 7.0%, the hrazing material is made of aluminum alloy containing, by mass %, Si: 6.0 to 11.0% and Zn: 0.1 to 3.0%, in a pitting potential after brazing beat treatment, a thickness of a region in which a potential difference from the noblest potential in the core material is 100 mV or more is 10% to 50% of the thickness of the brazing sheet.
    Type: Application
    Filed: March 12, 2015
    Publication date: February 15, 2018
    Applicant: Mitsubishi Aluminum Co., Ltd.,
    Inventors: Sho ISHIGAMI, Shohei IWAO