Patents Assigned to Mitsui Engineering & Shipbuilding Co., LTD
  • Publication number: 20120286171
    Abstract: Disclosed herein is a fluorescence measuring apparatus capable of determining whether accuracy of measuring fluorescence lifetime is deteriorated or not due to adjustment of the apparatus. The fluorescence measuring apparatus for measuring fluorescence emitted when an objects to be measured are irradiated with laser light includes: a laser light source that irradiates each of the objects to be measured with intensity-modulated laser light; a light-receiving unit that receives fluorescence emitted when each of the objects to be measured is irradiated with the laser light; a signal processing unit that determines a fluorescence lifetime using a signal of the fluorescence received by the light-receiving unit; and a determining unit that determines whether or not a fluorescence lifetime dispersion of the objects caused by amplification of the signal of the fluorescence performed by the light-receiving unit or by the signal processing unit is larger than a predetermined value.
    Type: Application
    Filed: January 13, 2011
    Publication date: November 15, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO.,LTD.
    Inventor: Kazuteru Hoshishima
  • Publication number: 20120285083
    Abstract: Provided is a process and an apparatus for producing at low cost gas hydrate pellets having an excellent storability. A gas hydrate generated from a raw-material gas and raw-material water is dewatered and simultaneously molded into pellets with compression-molding means under conditions suitable for generating the gas hydrate while the gas hydrate is generated from the raw-material gas and the raw-material water that exist among particles of the gas hydrate.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 15, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Toru Iwasaki, Masahiro Takahashi, Takashi Arai, Shinji Takahashi, Kouhei Takamoto, Kenji Ogawa, Masafumi Aoba
  • Patent number: 8309031
    Abstract: A gas hydrate production apparatus capable of reacting a raw gas with a raw water to thereby form a slurry gas hydrate and capable of removing water from the slurry gas hydrate by means of a gravitational dewatering unit. The gravitational dewatering unit is one including a cylindrical first tower body; a cylindrical dewatering part disposed on top of the first tower body; a water receiving part disposed outside the dewatering part; and a cylindrical second tower body disposed on top of the dewatering part, wherein the cross-sectional area of the second tower body is continuously or intermittently increased upward from the bottom.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 13, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Yuichi Katoh, Shigeru Nagamori, Toru Iwasaki, Takashi Arai, Kiyoshi Horiguchi, Tetsuro Murayama, Akira Tokinosu, Masahiro Takahashi, Toshio Yamaki
  • Publication number: 20120281204
    Abstract: Disclosed herein is a fluorescence measuring apparatus capable of more accurately measuring fluorescence emitted when an object to be measured is irradiated with laser light. The apparatus for measuring fluorescence emitted when an object to be measured is irradiated with laser light includes: a laser light source that irradiates the object to be measured with laser light; a first light-receiving unit that receives scattered light emitted when the object to be measured is irradiated with the laser light; a second light-receiving unit that receives fluorescence emitted when the object to be measured is irradiated with the laser light; and a signal processing unit that assigns a weight to a signal of the fluorescence received by the second light-receiving unit depending on an intensity of the scattered light received by the first light-receiving unit.
    Type: Application
    Filed: January 13, 2011
    Publication date: November 8, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO.,LTD.
    Inventors: Kazuteru Hoshishima, Shigeyuki Nakada
  • Publication number: 20120282649
    Abstract: Disclosed herein is a fluorescence detecting apparatus. The fluorescence detecting apparatus includes a light-receiving element that receives fluorescence emitted from an object to be measured irradiated with laser light modulated at a predetermined frequency and outputs a fluorescence signal at an adjusted output level; a signal processing unit that mixes the outputted fluorescence signal and a modulation signal with the frequency to generate fluorescence data including information about phase and intensity; and an analyzing device that calculates a first phase shift of the fluorescence emitted from the object to be measured with respect to the modulation signal, calculates a second phase shift by correcting the calculated first phase shift depending on conditions for adjusting the output level, and calculates a fluorescence relaxation time of the fluorescence emitted from the object to be measured using the calculated second phase shift.
    Type: Application
    Filed: January 5, 2011
    Publication date: November 8, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Hironori Hayashi, Shigeyuki Nakada, Kazuteru Hoshishima, Kyouji Doi
  • Patent number: 8303293
    Abstract: Provided is a process and an apparatus for producing at low cost gas hydrate pellets having an excellent storability. A gas hydrate generated from a raw-material gas and raw-material water is dewatered and simultaneously molded into pellets with compression-molding means under conditions suitable for generating the gas hydrate while the gas hydrate is generated from the raw-material gas and the raw-material water that exist among particles of the gas hydrate.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: November 6, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Toru Iwasaki, Masahiro Takahashi, Takashi Arai, Shinji Takahashi, Kouhei Takamoto, Kenji Ogawa, Masafumi Aoba
  • Patent number: 8291581
    Abstract: A plurality of reference holes are formed in the surface of a first substrate made of a first material, and a plurality of columnar members are each fitted in the reference holes in such a manner that at least a part of each of the columnar members projects from the surface of the first substrate. Subsequently, an electrode surface layer made of a second material is formed on the surface of the first substrate in such a manner that an end portion of each of the columnar members are exposed at the surface and then the columnar members are removed. Thus obtained is a substrate-like electrode including at least an electrode surface layer provided with through holes having a cross section matching a sectional shape of the projecting portion of the columnar members.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 23, 2012
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd., ADMAP, Inc.
    Inventor: Fimitomo Kawahara
  • Patent number: 8241484
    Abstract: [Problem] To provide a membrane treatment method and a membrane treatment apparatus for ballast water using a membrane module, which are capable of inhibiting the formation of scale on the membrane surface to reduce fouling, using a simple installation. [Means for Solving the Problem] The membrane treatment method and the membrane treatment apparatus for ballast water using a membrane module according to the invention, having a membrane treatment tank 2 and a membrane module 1 provided in the tank for continuously performing filtration while ballast water is being passed thereto as raw water; wherein a positive electrode and a negative electrode are provided in the membrane treatment tank 2 so as to come into contact with raw water in the tank, and a current passing means is provided in the tank for applying a voltage between the electrodes.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: August 14, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Masahiro Saito, Gaku Taniguchi, Taishi Sato, Satoru Okada
  • Patent number: 8231708
    Abstract: Pellet damaging is prevented at the time of pellet charging into a storage tank. There is provided a method of storing a gas hydrate in which pellets obtained by compression molding of powdery gas hydrate are conveyed into a storage tank by the use of a slurry liquor, which method includes pouring a liquid for impact absorption in advance into the storage tank so that the impact on the pellets charged in the storage tank is absorbed by the liquid for impact absorption.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: July 31, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Yanagisawa, Seiichi Takanashi, Tamehisa Yamaguchi, Takahiro Yamazaki
  • Publication number: 20120183440
    Abstract: Among donor molecules labeling protein in living cells to be measured, the rate of donor molecules binding to an acceptor molecule and occurring FRET is determined. In a plurality of previous measurement samples having different ratios of first molecule concentration to second molecule concentration, a fluorescence lifetime of the first molecule are calculated and the fluorescence lifetime minimum value of the first molecule is calculated. The samples are irradiated with a laser beam having time-modulated intensity and the fluorescence emitted by the laser-irradiated measurement samples are measured. By using the fluorescent signals thus measured, the fluorescence lifetime of the first molecule is calculated. By using the fluorescence lifetime minimum value of the first molecule and the fluorescence lifetime of the first molecule that is calculated above, the rate of the first molecules occurring FRET in the first molecules in the measurement samples is calculated.
    Type: Application
    Filed: September 13, 2010
    Publication date: July 19, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO.,LTD.
    Inventors: Shigeyuki Nakada, Hironori Hayashi, Kazuteru Hoshishima
  • Patent number: 8217209
    Abstract: Disclosed is a process for production of a gas hydrate, wherein the process comprises a gas hydrate production step, a cooling step, a depressurizing step and a re-cooling step. In the cooling step, the temperature (T) required for the cooling of the gas hydrate is adjusted to a temperature equal to or higher than a cooling limit temperature (t1+t2) (which is a sum of an equilibrium temperature (t1) of the gas hydrate and a temperature for correction (t2)) and equal to or lower than the freezing point (0° C.).
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: July 10, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Toru Iwasaki, Masahiro Takahashi
  • Patent number: 8215493
    Abstract: A membrane treatment apparatus includes a filtration membrane 10 filtering raw water existing in an external environment 100 by applying pressure thereto and a treated water outlet 11 from which treated water collected after filtration by the filtration membrane 10 is taken, and is provided with a filter cloth 12 placed and fixed outside the filtration membrane 10 with a predetermined space left between the filter cloth and the filtration membrane. Preferably, the filter cloth 12 is provided in such a way as to cover an outer circumferential side and a bottom of the filtration membrane 10, and the filter cloth 12 is provided in such a way as to cover the outer circumferential side of the filtration membrane 10 with the bottom thereof uncovered.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: July 10, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Noboru Takemura, Masahiro Saito, Gaku Taniguchi, Taishi Sato
  • Patent number: 8211311
    Abstract: A method for treating ship ballast water with a membrane, which can easily separate and reliably remove a fouling substance attached to a membrane and maintain the membrane flux for long periods. The method including a membrane separation step of taking in seawater in a port area in which a ship is anchored and separating a microorganism with a size equal to or greater than a predetermined size therefrom with a membrane filtration apparatus installed in or on a hull of the ship and having a filtration membrane module, a backwash step of separating a fouling substance attached to a membrane surface of the membrane filtration apparatus from the membrane surface by backwashing is provided.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 3, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Masahiro Saito, Toshio Sano
  • Patent number: 8214173
    Abstract: A laser beam with a wavelength capable of exciting atoms of helium in the metastable state is directed to a generated plasma, and atoms in the metastable state are excited. Absorption amount information representing the amount of laser beam absorbed is acquired, and the density of atoms of helium in the metastable state in the plasma is computed from the absorption amount. The emissions of light from helium gas in the plasma caused by transition from two different excited states to the lower level are measured, and the ratio between the intensities of the emissions is determined. The electron temperature of the produced plasma is computed from the computed density of the atoms of helium gas in the metastable state and the computed emission intensity ratio. With this, the plasma electron temperature can be computed with a relatively high accuracy irrespective of the condition of the plasma atmosphere.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 3, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventor: Kazuki Takizawa
  • Patent number: 8202367
    Abstract: An atomic layer growing apparatus includes a film forming chamber (101) in which the vapor phase growth of a film is performed, a substrate table (102) having a heating mechanism accommodated in the film forming chamber (101), and an exhaust mechanism (104). The atomic layer growing apparatus also includes a material supply unit (105) including a material vaporizer (151), two buffer tanks, i.e., a buffer tank A (152a) and buffer tank B (152b), a fill valve A (153a) and supply valve A (154a) of the buffer tank A (152a), a fill valve B (153b) and supply valve B (154b) of the buffer tank B (152b), an injection control valve (155), and a control unit (156) which controls the opening/closing of each valve.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 19, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Hiroyuki Tachibana, Kazutoshi Murata, Nozomu Hattori
  • Publication number: 20120138599
    Abstract: A semiconductor substrate heat treatment apparatus includes a boat formed by stacking, in a vertical direction, a plurality of susceptors to be treated placing wafers thereon individually, and auxiliary susceptors disposed in a manner to sandwich the plurality of susceptors to be treated therebetween in the vertical direction; an induction heating coil disposed on an outer circumferential side of the boat and configured to generate an alternating magnetic flux in a direction parallel to planes of the plurality of susceptors to be treated on which the wafers are individually placed; and a power supply configured to supply power to the induction heating coil.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 7, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Junya Miyata, Naoki Uchida
  • Patent number: 8178239
    Abstract: A cathode material for a secondary battery containing a cathode active material represented by the general formula LinFePO4 (wherein n represents a number from 0 to 1) as a primary component and molybdenum (Mo), wherein the cathode active material LinFePO4 is composited with the Mo. In a preferred embodiment, the cathode material has conductive carbon deposited on the surface thereof.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: May 15, 2012
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd., Research Institute of Innovative Technology for the Earth
    Inventors: Naoki Hatta, Toshikazu Inaba, Izumi Uchiyama
  • Publication number: 20120111194
    Abstract: To provide a gas mixture separation apparatus and a method which can reduce the energy consumption necessary to separate one type of gas, such as CO2, from a gas mixture, such as combustion exhaust gas or process gas, to reduce the operating cost of the apparatus. A gas mixture separation apparatus includes a gas hydrate formation part for hydrating one type of gas contained in a gas mixture containing a plurality of gas components to form a gas hydrate slurry, a dehydration part for dehydrating the gas hydrate slurry, and a gas hydrate decomposition part for decomposing and regasifying the gas hydrate obtained by the dehydration, and is characterized in that the water removed from the gas hydrate slurry in the dehydration part and the water generated when the gas hydrate is decomposed in the gas hydrate decomposition part are mixed together and the mixed water is introduced into the gas hydrate formation part as circulating water.
    Type: Application
    Filed: March 30, 2010
    Publication date: May 10, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Mitsuru Miyagawa, Kazuyoshi Matsuo, Souichiro Sakurai, Masakazu Sakai, Akira Kidoguchi
  • Publication number: 20120085933
    Abstract: A fluorescence emitted by a measurement object at a measurement point is measured. When the fluorescence is measured, a measurement object is irradiated with laser light whose intensity is time-modulated by using a modulation signal at a predetermined frequency. Then, the fluorescence emitted by the measurement object is formed to a flux of the fluorescence having uniform distribution of light intensity, and a plurality of partial fluorescent signals are generated by receiving a plurality of divided portions of the flux of the fluorescence. At least some of the partial fluorescent signals are added altogether to generate a single fluorescent signal. Finally, a fluorescence relaxation time of the fluorescence emitted by the measurement object is calculated from the generated fluorescent signal by using the modulation signal. When fluorescence intensity of the fluorescence calculated from the fluorescent signal exceeds a predetermined threshold, the partial fluorescent signals to be added are limited in number.
    Type: Application
    Filed: May 27, 2010
    Publication date: April 12, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Kyouji Doi, Hironori Hayashi, Kazuteru Hoshishima, Yumi Asano
  • Patent number: 8153075
    Abstract: The invention provides a gas hydrate production apparatus which can eliminate the need for an agitator in a generator, and at the same time, can make constant the percentage of gas hydration of the product. A shell-and-tube-type generator 2 is provided downstream of an ejector-type mixer 1 that stirs and mixes a raw-material gas g and a raw-material water w. In addition, partition walls 41 to 43 each causing a gas hydrate slurry to turn around are provided in each of end plates 37 and 38 placed respectively in the front and rear ends of the generator 2. Moreover, a dehydrator 3 including a cone-shaped filter 48 is provided downstream of the generator 2, and a drainage pipe 11 is provided to the dehydrator 3. Further, a flow regulating valve 12 is provided to the drainage pipe 11.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: April 10, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Shigeru Nagamori, Tetsuro Murayama, Hidenori Moriya, Takashi Arai, Nobutaka Oya